The 18O(p,α)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,α)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy Ec.m.=340 keV down to Ec.m.=55 keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy Er=90 keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01–1.00 GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains.

Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements / C.G. Bruno, M. Aliotta, P. Descouvemont, A. Best, T. Davinson, D. Bemmerer, A. Boeltzig, C. Broggini, A. Caciolli, F. Cavanna, T. Chillery, G.F. Ciani, P. Corvisiero, R. Depalo, A. Di Leva, Z. Elekes, F. Ferraro, A. Formicola, Z. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Gyürky, G. Imbriani, M. Junker, M. Lugaro, P. Marigo, R. Menegazzo, V. Mossa, F.R. Pantaleo, D. Piatti, P. Prati, K. Stöckel, O. Straniero, F. Strieder, T. Szücs, M.P. Takács, D. Trezzi. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 790(2019 Mar 10), pp. 237-242. [10.1016/j.physletb.2019.01.017]

Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements

R. Depalo;F. Ferraro;A. Guglielmetti;D. Trezzi
2019-03-10

Abstract

The 18O(p,α)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,α)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy Ec.m.=340 keV down to Ec.m.=55 keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy Er=90 keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01–1.00 GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains.
Hydrostatic stellar nucleosynthesis; Stellar hydrogen burning; Nuclear and High Energy Physics
Settore FIS/04 - Fisica Nucleare e Subnucleare
Settore FIS/05 - Astronomia e Astrofisica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bruno_plb_2019.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 531.89 kB
Formato Adobe PDF
531.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/622739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact