We report here the finding of a new pharmacological activity of a well known antagonist of peroxisome proliferator-activated receptors (PPARs). PPARs belong to the family of nuclear receptors playing a relevant role in mammalian physiology and are currently believed to represent a major target for the development of innovative drugs for metabolic and inflammatory diseases. In the present study, the application of reporter animal technology was instrumental to obtain the global pharmacological profiling indispensable to unraveling 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886)-selective PPAR modulator (SPPARM) activity not underlined by previous traditional, cell-based studies. The results of this study, demonstrating the usefulness of reporter mice, may open new avenues for the development of innovative drugs for cardiovascular, endocrine, neural, and skeletal systems characterized by limited side effects
In vivo imaging reveals selective peroxisome proliferator activated receptor modulator activity of the synthetic ligand 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886) / A. Biserni, F. Gianessi, A.F. Sciarroni, F.M. Milazzo, A. Maggi, P. Ciana. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - 73:5(2008 May), pp. 1434-1443. [10.1124/mol.107.042689]
In vivo imaging reveals selective peroxisome proliferator activated receptor modulator activity of the synthetic ligand 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886)
A. BiserniPrimo
;A. MaggiPenultimo
;P. CianaUltimo
2008
Abstract
We report here the finding of a new pharmacological activity of a well known antagonist of peroxisome proliferator-activated receptors (PPARs). PPARs belong to the family of nuclear receptors playing a relevant role in mammalian physiology and are currently believed to represent a major target for the development of innovative drugs for metabolic and inflammatory diseases. In the present study, the application of reporter animal technology was instrumental to obtain the global pharmacological profiling indispensable to unraveling 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886)-selective PPAR modulator (SPPARM) activity not underlined by previous traditional, cell-based studies. The results of this study, demonstrating the usefulness of reporter mice, may open new avenues for the development of innovative drugs for cardiovascular, endocrine, neural, and skeletal systems characterized by limited side effectsPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.