We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.
Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem / E. Bandini, A. Cosso, M. Fuhrman, H. Pham. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 129:2(2019 Feb), pp. 674-711.
Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem
A. Cosso;M. FuhrmanPenultimo
;
2019
Abstract
We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0304414918300553-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
578.97 kB
Formato
Adobe PDF
|
578.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.