Four pigtailed macaques were inoculated with an infectious, apathogenic human immunodeficiency virus type 2 (HIV-2) molecular clone (HIV-2KR) and subsequently challenged with a highly pathogenic strain, HIV-2287, together with two naive control animals. After challenge, two animals inoculated with a high dose of the immunizing strain were protected from CD4 decline and immunodeficiency. To examine the role of genetic heterogeneity in protection, fragments of the env gene were amplified from peripheral blood mononuclear cell DNA and plasma RNA of challenged animals by PCR, examined by using a heteroduplex tracking assay (HTA), and sequenced. By HTA, variation was detected principally within the V1 and V2 regions of envelope. Extent of variation in viral DNA clones as assessed by HTA correlated with inoculum size, as did the degree of variation in sequences of clones derived from viral DNA. Conversely, a rapid reduction in the number of plasma viral RNA variants was noted by HTA at 8 weeks postinfection in protected animals; this reduction was not present in naive or unprotected macaques. Sequences derived from plasma viral RNA were found to be more closely related than corresponding viral DNA sequences, and protection correlated with a significant reduction in variation in plasma RNA sequences in animals given the identical inocula of HIV-2287. Nonsynonymous mutations were significantly less prevalent in the protected animals. An additional potential glycosylation site was predicted to be present in the V2 region in all but one clone, and amino acid signatures related to protection were identified in viral DNA and RNA clones within both the V1 and V2 regions. Examination of the role of viral variation in this HIV-2 live-virus vaccine model may provide valuable insights into immunopathogenesis.

Genetic variation in a human immunodeficiency virus type 2 live-virus Macaca nemestrina vaccine model / A. Radaelli, G. Kraus, A. Schmidt, P. Badel, J. McClure, S.L. Hu, W. Morton, C. De Giuli Morghen, F. Wong-Staal, D. Looney. - In: JOURNAL OF VIROLOGY. - ISSN 0022-538X. - 72:10(1998 Oct), pp. 7871-7884.

Genetic variation in a human immunodeficiency virus type 2 live-virus Macaca nemestrina vaccine model

A. Radaelli
Primo
;
C. De Giuli Morghen;
1998-10

Abstract

Four pigtailed macaques were inoculated with an infectious, apathogenic human immunodeficiency virus type 2 (HIV-2) molecular clone (HIV-2KR) and subsequently challenged with a highly pathogenic strain, HIV-2287, together with two naive control animals. After challenge, two animals inoculated with a high dose of the immunizing strain were protected from CD4 decline and immunodeficiency. To examine the role of genetic heterogeneity in protection, fragments of the env gene were amplified from peripheral blood mononuclear cell DNA and plasma RNA of challenged animals by PCR, examined by using a heteroduplex tracking assay (HTA), and sequenced. By HTA, variation was detected principally within the V1 and V2 regions of envelope. Extent of variation in viral DNA clones as assessed by HTA correlated with inoculum size, as did the degree of variation in sequences of clones derived from viral DNA. Conversely, a rapid reduction in the number of plasma viral RNA variants was noted by HTA at 8 weeks postinfection in protected animals; this reduction was not present in naive or unprotected macaques. Sequences derived from plasma viral RNA were found to be more closely related than corresponding viral DNA sequences, and protection correlated with a significant reduction in variation in plasma RNA sequences in animals given the identical inocula of HIV-2287. Nonsynonymous mutations were significantly less prevalent in the protected animals. An additional potential glycosylation site was predicted to be present in the V2 region in all but one clone, and amino acid signatures related to protection were identified in viral DNA and RNA clones within both the V1 and V2 regions. Examination of the role of viral variation in this HIV-2 live-virus vaccine model may provide valuable insights into immunopathogenesis.
http://jvi.asm.org/cgi/content/full/72/10/7871?view=long&pmid=9733824
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/62123
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact