Different strategies proposed in the literature to attempt gene therapy of AIDS are based mainly on the intracellular production of RNA and protein therapeutics. This report describes the construction and the anti-human immunodeficiency virus type 1 (HIV-1) activity of a new type of antisense tRNA directed against a nucleotide region in the first coding exon of HIV-1 tat (nucleotides 5924 to 5943; Los Alamos data bank) which is conserved among many HIV-1 clones. The anti-tat antisense sequence was inserted into a tRNAPro backbone by replacement of the anticodon loop, without altering the tRNA canonic tetraloop structure. The antisense tRNA was able to interact effectively with its target in vitro. Jurkat cells that constitutively expressed the anti-tat tRNA following retroviral vector transduction exhibited significant resistance to HIV-1 de novo infection. Resistance seemed to correlate with the level of antisense expression. This is the first time that such a tRNA antisense strategy has been shown to be effective as a genetic treatment of HIV-1 infection in tissue culture. The construct design proposed in this report has some intrinsic advantages: the transcript is driven by a polymerase III promoter, the short length of the RNA minimizes effects of intramolecular base pairing that may impair target recognition, and the antisense RNA has the stability and intracellular fate of a native tRNA molecule.
A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection / M.A. Biasolo, A. Radaelli, L. Del Pup, E. Franchin, C. De Giuli Morghen, G. Palù. - In: JOURNAL OF VIROLOGY. - ISSN 0022-538X. - 70:4(1996 Apr), pp. 2154-2161.
A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection
A. RadaelliSecondo
;C. De Giuli MorghenPenultimo
;
1996
Abstract
Different strategies proposed in the literature to attempt gene therapy of AIDS are based mainly on the intracellular production of RNA and protein therapeutics. This report describes the construction and the anti-human immunodeficiency virus type 1 (HIV-1) activity of a new type of antisense tRNA directed against a nucleotide region in the first coding exon of HIV-1 tat (nucleotides 5924 to 5943; Los Alamos data bank) which is conserved among many HIV-1 clones. The anti-tat antisense sequence was inserted into a tRNAPro backbone by replacement of the anticodon loop, without altering the tRNA canonic tetraloop structure. The antisense tRNA was able to interact effectively with its target in vitro. Jurkat cells that constitutively expressed the anti-tat tRNA following retroviral vector transduction exhibited significant resistance to HIV-1 de novo infection. Resistance seemed to correlate with the level of antisense expression. This is the first time that such a tRNA antisense strategy has been shown to be effective as a genetic treatment of HIV-1 infection in tissue culture. The construct design proposed in this report has some intrinsic advantages: the transcript is driven by a polymerase III promoter, the short length of the RNA minimizes effects of intramolecular base pairing that may impair target recognition, and the antisense RNA has the stability and intracellular fate of a native tRNA molecule.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.