BACKGROUND: Newer guidelines address the importance of effective chest compressions, citing evidence that this primary intervention is usually suboptimally performed during cardiopulmonary resuscitation. We therefore sought a readily available option for monitoring the effectiveness of chest compressions, specifically using the electrocardiogram. METHODS AND RESULTS: Ventricular fibrillation was induced by coronary artery occlusion and untreated for 5 mins. Male domestic pigs weighing 40 +/- 2 kg were randomized to optimal or suboptimal chest compressions after onset of ventricular fibrillation. Optimal depth of mechanical compression in six animals was defined as a decrease of 25% in anterior posterior diameter of the chest during compression. Suboptimal compression, also in six animals, was defined as a decrease of 17.5% in anterior posterior diameter. For each group, the chest compressions were maintained at a rate of 100 per min. After 3 mins of chest compression, defibrillation was attempted with a 150-J biphasic shock. All animals had return of spontaneous circulation after optimal compressions. This contrasted with suboptimal compressions, after which none of the animals had return of spontaneous circulation. Amplitude spectrum area values, representing the electrocardiographic amplitude frequency spectral area computed from conventional precordial leads, like coronary perfusion pressure and end tidal PCO2, were predictive of outcomes. CONCLUSION: The effectiveness of chest compressions was reflected in the amplitude spectrum area values. Accordingly, the amplitude spectrum area predictor may be incorporated in current automated external defibrillators to monitor and prompt the effectiveness of chest compression during cardiopulmonary resuscitation.

Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation / Y. Li, G. Ristagno, J. Bisera, W. Tang, Q. Deng, M. Weil. - In: CRITICAL CARE MEDICINE. - ISSN 0090-3493. - 36:1(2008), pp. 211-215.

Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation

G. Ristagno;
2008

Abstract

BACKGROUND: Newer guidelines address the importance of effective chest compressions, citing evidence that this primary intervention is usually suboptimally performed during cardiopulmonary resuscitation. We therefore sought a readily available option for monitoring the effectiveness of chest compressions, specifically using the electrocardiogram. METHODS AND RESULTS: Ventricular fibrillation was induced by coronary artery occlusion and untreated for 5 mins. Male domestic pigs weighing 40 +/- 2 kg were randomized to optimal or suboptimal chest compressions after onset of ventricular fibrillation. Optimal depth of mechanical compression in six animals was defined as a decrease of 25% in anterior posterior diameter of the chest during compression. Suboptimal compression, also in six animals, was defined as a decrease of 17.5% in anterior posterior diameter. For each group, the chest compressions were maintained at a rate of 100 per min. After 3 mins of chest compression, defibrillation was attempted with a 150-J biphasic shock. All animals had return of spontaneous circulation after optimal compressions. This contrasted with suboptimal compressions, after which none of the animals had return of spontaneous circulation. Amplitude spectrum area values, representing the electrocardiographic amplitude frequency spectral area computed from conventional precordial leads, like coronary perfusion pressure and end tidal PCO2, were predictive of outcomes. CONCLUSION: The effectiveness of chest compressions was reflected in the amplitude spectrum area values. Accordingly, the amplitude spectrum area predictor may be incorporated in current automated external defibrillators to monitor and prompt the effectiveness of chest compression during cardiopulmonary resuscitation.
cardiac arrest; cardiopulmonary resuscitation; chest compression; electrocardiogram waveforms; amplitude spectrum area
Settore MED/41 - Anestesiologia
2008
Article (author)
File in questo prodotto:
File Dimensione Formato  
CritCareMed2008_AMSAandCPRQuality.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 415.25 kB
Formato Adobe PDF
415.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/618387
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
  • OpenAlex ND
social impact