A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k.

Isogeometric Schwarz preconditioners for the biharmonic problem / D. Cho, L.F. Pavarino, S. Scacchi. - In: ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS. - ISSN 1068-9613. - 49(2018), pp. 81-102.

Isogeometric Schwarz preconditioners for the biharmonic problem

D. Cho;L.F. Pavarino;S. Scacchi
2018

Abstract

A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k.
domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS
Settore MAT/08 - Analisi Numerica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
pp81-102 (2).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 529.55 kB
Formato Adobe PDF
529.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/617145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact