The light scattered by cold atoms induces mutual optical forces between them, which can lead to bound states. In addition to the trapping potential, this light-induced interaction generates a velocity-dependent force which damps or amplifies the stretching vibrational mode of the two-atom "molecule." This velocity-dependent force acts on time scales much longer than the mode period or the dipole dynamics, determining the true stability of the bound state. We show that, for two atoms, the stochastic heating due to spontaneous emission always exceeds the bounding effect, so pairs of cold atoms cannot be truly stable without an extra cooling mechanism.
Stochastic heating and self-induced cooling in optically bound pairs of atoms / A.T. Gisbert, N. Piovella, R. Bachelard. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 99:1(2019 Jan 22). [10.1103/PhysRevA.99.013619]
Stochastic heating and self-induced cooling in optically bound pairs of atoms
N. Piovella;
2019
Abstract
The light scattered by cold atoms induces mutual optical forces between them, which can lead to bound states. In addition to the trapping potential, this light-induced interaction generates a velocity-dependent force which damps or amplifies the stretching vibrational mode of the two-atom "molecule." This velocity-dependent force acts on time scales much longer than the mode period or the dipole dynamics, determining the true stability of the bound state. We show that, for two atoms, the stochastic heating due to spontaneous emission always exceeds the bounding effect, so pairs of cold atoms cannot be truly stable without an extra cooling mechanism.File | Dimensione | Formato | |
---|---|---|---|
PRA_2019.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.