Captive experiments have shown that many species regulate their macronutrient (i.e. protein, lipid and carbohydrate) intake by selecting complementary food types, but the relationships between foraging strategies in the wild and nutrient regulation remain poorly understood. Using the pine marten as a model species, we collated available data from the literature to investigate effects of seasonal and geographic variation in diet on dietary macronutrient balance. Our analysis showed that despite a high variety of foods comprising the diet, typical of a generalist predator, the macronutrient energy ratios of pine martens were limited to a range of 50–55% of protein, 38–42% of lipids and 5–10% of carbohydrates. This broad annual stabilisation of macronutrient ratios was achieved by using alternative animal foods to compensate for the high fluctuation of particular prey items, and sourcing non-protein energy (carbohydrates and fats) from plant-derived foods, particularly fruits. Macronutrient balance varied seasonally, with higher carbohydrate intake in summer–autumn, due to opportunistic fruit consumption, and higher protein intake in winter–spring. In terms of their proportional dietary carbohydrate intake the pine marten's nutritional strategy fell between that of true carnivores (e.g. the wolf) and more omnivorous feeders (e.g. the European badger). However, in terms of energy contributed by protein pine martens are equivalent to obligate carnivores such as the wolf and domesticated cat, and different to some omnivorous carnivores such as the domesticated dog and grizzly bears.

Functional implications of omnivory for dietary nutrient balance / L. Remonti, A. Balestrieri, D. Raubenheimer, N. Saino. - In: OIKOS. - ISSN 0030-1299. - 125:9(2016), pp. 1233-1240. [10.1111/oik.02801]

Functional implications of omnivory for dietary nutrient balance

A. Balestrieri;N. Saino
Ultimo
2016

Abstract

Captive experiments have shown that many species regulate their macronutrient (i.e. protein, lipid and carbohydrate) intake by selecting complementary food types, but the relationships between foraging strategies in the wild and nutrient regulation remain poorly understood. Using the pine marten as a model species, we collated available data from the literature to investigate effects of seasonal and geographic variation in diet on dietary macronutrient balance. Our analysis showed that despite a high variety of foods comprising the diet, typical of a generalist predator, the macronutrient energy ratios of pine martens were limited to a range of 50–55% of protein, 38–42% of lipids and 5–10% of carbohydrates. This broad annual stabilisation of macronutrient ratios was achieved by using alternative animal foods to compensate for the high fluctuation of particular prey items, and sourcing non-protein energy (carbohydrates and fats) from plant-derived foods, particularly fruits. Macronutrient balance varied seasonally, with higher carbohydrate intake in summer–autumn, due to opportunistic fruit consumption, and higher protein intake in winter–spring. In terms of their proportional dietary carbohydrate intake the pine marten's nutritional strategy fell between that of true carnivores (e.g. the wolf) and more omnivorous feeders (e.g. the European badger). However, in terms of energy contributed by protein pine martens are equivalent to obligate carnivores such as the wolf and domesticated cat, and different to some omnivorous carnivores such as the domesticated dog and grizzly bears.
Ecology; Evolution; Behavior and Systematics
Settore BIO/07 - Ecologia
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Remonti_et_al-2015-Oikos.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 740.48 kB
Formato Adobe PDF
740.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/614758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact