Mechanical ventilation is a life-saving procedure, which takes over the function of the respiratory muscles while buying time for healing to take place. However, it can also promote or worsen lung injury, so that careful monitoring of respiratory mechanics is suggested to titrate the level of support and avoid injurious pressures and volumes to develop. Standard monitoring includes flow, volume and airway pressure (Paw). However, Paw represents the pressure acting on the respiratory system as a whole, and does not allow to differentiate the part of pressure that is spent di distend the chest wall. Moreover, if spontaneous breathing efforts are allowed, the Paw is the sum of that applied by the ventilator and that generated by the patient. As a consequence, monitoring of Paw has significant shortcomings. Assessment of esophageal pressure (Pes), as a surrogate for pleural pressure (Ppl), may allow the clinicians to discriminate between the elastic behaviour of the lung and the chest wall, and to calculate the degree of spontaneous respiratory effort. In the present review, the characteristics and limitations of airway and transpulmonary pressure monitoring will be presented; we will highlight the different assumptions underlying the various methods for measuring transpulmonary pressure (i.e., the elastance-derived and the release-derived method, and the direct measurement), as well as the potential application of transpulmonary pressure assessment during both controlled and spontaneous/assisted mechanical ventilation in critically ill patients.

Interpretation of the transpulmonary pressure in the critically ill patient / M. Umbrello, D. Chiumello. - In: ANNALS OF TRANSLATIONAL MEDICINE. - ISSN 2305-5839. - 6:19(2018 Oct). [10.21037/atm.2018.05.31]

Interpretation of the transpulmonary pressure in the critically ill patient

M. Umbrello;D. Chiumello
2018

Abstract

Mechanical ventilation is a life-saving procedure, which takes over the function of the respiratory muscles while buying time for healing to take place. However, it can also promote or worsen lung injury, so that careful monitoring of respiratory mechanics is suggested to titrate the level of support and avoid injurious pressures and volumes to develop. Standard monitoring includes flow, volume and airway pressure (Paw). However, Paw represents the pressure acting on the respiratory system as a whole, and does not allow to differentiate the part of pressure that is spent di distend the chest wall. Moreover, if spontaneous breathing efforts are allowed, the Paw is the sum of that applied by the ventilator and that generated by the patient. As a consequence, monitoring of Paw has significant shortcomings. Assessment of esophageal pressure (Pes), as a surrogate for pleural pressure (Ppl), may allow the clinicians to discriminate between the elastic behaviour of the lung and the chest wall, and to calculate the degree of spontaneous respiratory effort. In the present review, the characteristics and limitations of airway and transpulmonary pressure monitoring will be presented; we will highlight the different assumptions underlying the various methods for measuring transpulmonary pressure (i.e., the elastance-derived and the release-derived method, and the direct measurement), as well as the potential application of transpulmonary pressure assessment during both controlled and spontaneous/assisted mechanical ventilation in critically ill patients.
Esophageal pressure (Pes); critically ill patients; mechanical ventilation; transpulmonary pressure
Settore MED/41 - Anestesiologia
ott-2018
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/613301
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 21
social impact