Let G be a noncompact connected Lie group and. be the right Haar measure of G. Let X = {X1,..., Xq} be a family of left invariant vector fields which satisfy Hormander's condition, and let Delta = -Sigma(q)(i=1) X-i(2) be the corresponding subLaplacian. For 1 = p < 8 and a = 0 we define the Sobolev space L-alpha(p) (G) = {f is an element of L-p (.) : a/2 f. L-p (.)}, endowed with the norm vertical bar vertical bar f vertical bar vertical bar a, p = vertical bar vertical bar f vertical bar vertical bar(p) + vertical bar vertical bar Delta(a/2) f vertical bar vertical bar(p), where we denote by f p the norm of f in L-p(.). In this paper we show that for all a = 0 and p. (1,8), the space L 8 n L-p a (G) is an algebra under pointwise product, that is, there exists a positive constant Ca, p such that for all f, g. L 8n L-p a (G), f g. L 8n L-p a (G) and vertical bar vertical bar fg vertical bar vertical bar a,p <= Ca,p (vertical bar vertical bar f vertical bar vertical bar a,p vertical bar vertical bar g vertical bar vertical bar(infinity) + vertical bar vertical bar f vertical bar vertical bar(infinity) vertical bar vertical bar g vertical bar vertical bar a, p). Such estimates were proved by Coulhon, Russ and Tardivel-Nachef in the case when G is unimodular. We shalL(p)rove it on Lie groups, thus extending their result to the nonunimodular case. In order to prove our main result, we need to study the boundedness of local Riesz transforms Rc J = XJ (cI + ) -m/2, where c > 0, XJ = X j1... X jm and j . {1,..., q} for = 1,..., m. We show that if c is sufficiently large, the Riesz transform Rc J is bounded on L-p(rho) for every p is an element of (1, infinity), and prove also appropriate endpoint results involving Hardy and BMO spaces.

Sobolev algebras on nonunimodular Lie groups / M.M. Peloso, M. Vallarino. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:6(2018 Dec).

Sobolev algebras on nonunimodular Lie groups

M.M. Peloso
Primo
;
2018

Abstract

Let G be a noncompact connected Lie group and. be the right Haar measure of G. Let X = {X1,..., Xq} be a family of left invariant vector fields which satisfy Hormander's condition, and let Delta = -Sigma(q)(i=1) X-i(2) be the corresponding subLaplacian. For 1 = p < 8 and a = 0 we define the Sobolev space L-alpha(p) (G) = {f is an element of L-p (.) : a/2 f. L-p (.)}, endowed with the norm vertical bar vertical bar f vertical bar vertical bar a, p = vertical bar vertical bar f vertical bar vertical bar(p) + vertical bar vertical bar Delta(a/2) f vertical bar vertical bar(p), where we denote by f p the norm of f in L-p(.). In this paper we show that for all a = 0 and p. (1,8), the space L 8 n L-p a (G) is an algebra under pointwise product, that is, there exists a positive constant Ca, p such that for all f, g. L 8n L-p a (G), f g. L 8n L-p a (G) and vertical bar vertical bar fg vertical bar vertical bar a,p <= Ca,p (vertical bar vertical bar f vertical bar vertical bar a,p vertical bar vertical bar g vertical bar vertical bar(infinity) + vertical bar vertical bar f vertical bar vertical bar(infinity) vertical bar vertical bar g vertical bar vertical bar a, p). Such estimates were proved by Coulhon, Russ and Tardivel-Nachef in the case when G is unimodular. We shalL(p)rove it on Lie groups, thus extending their result to the nonunimodular case. In order to prove our main result, we need to study the boundedness of local Riesz transforms Rc J = XJ (cI + ) -m/2, where c > 0, XJ = X j1... X jm and j . {1,..., q} for = 1,..., m. We show that if c is sufficiently large, the Riesz transform Rc J is bounded on L-p(rho) for every p is an element of (1, infinity), and prove also appropriate endpoint results involving Hardy and BMO spaces.
No
English
Settore MAT/05 - Analisi Matematica
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015A35N9B_007
dic-2018
Springer
57
6
150
34
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Sobolev algebras on nonunimodular Lie groups / M.M. Peloso, M. Vallarino. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:6(2018 Dec).
reserved
Prodotti della ricerca::01 - Articolo su periodico
2
262
Article (author)
si
M.M. Peloso, M. Vallarino
File in questo prodotto:
File Dimensione Formato  
Peloso-Vallarino2018_Article_SobolevAlgebrasOnNonunimodular.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 714.35 kB
Formato Adobe PDF
714.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/612698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact