Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-Fornæss index is 1. The analytical condition is independent of strongly pseudoconvex points and extends Fornæss– Herbig’s theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich– Fornæss index is 1. The index of this domain can not be verified by formerly known theorems.
Geometric analysis on the diederich–Fornæss index / S. George Krantz, B. Liu, M.M. Peloso. - In: JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY. - ISSN 0304-9914. - 55:4(2018), pp. 897-921.
Titolo: | Geometric analysis on the diederich–Fornæss index | |
Autori: | PELOSO, MARCO MARIA (Ultimo) | |
Parole Chiave: | Diederich-Fornaess index; pseudoconvex; domain; plurisubharmonic | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Data di pubblicazione: | 2018 | |
Rivista: | ||
Tipologia: | Article (author) | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.4134/JKMS.j170515 | |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
GEOMETRIC_ANALYSIS_ON_THE_DIEDERICH-FORNÆSS_INDEX.pdf | Publisher's version/PDF | Administrator Richiedi una copia |