In this paper, we consider the asymptotic behavior of the fractional mean curvature when s→0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s∈(0,1) is small, in a bounded and connected open set with C2 boundary Ω⊂Rn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary. Also, we prove the continuity of the fractional mean curvature in all variables, for s∈[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.

Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter / C. Bucur, L. Lombardini, E. Valdinoci. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - (2018). [Epub ahead of print] [10.1016/j.anihpc.2018.08.003]

Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter

C. Bucur
Primo
;
L. Lombardini
Secondo
;
E. Valdinoci
Ultimo
2018

Abstract

In this paper, we consider the asymptotic behavior of the fractional mean curvature when s→0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s∈(0,1) is small, in a bounded and connected open set with C2 boundary Ω⊂Rn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary. Also, we prove the continuity of the fractional mean curvature in all variables, for s∈[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.
Loss of regularity; Nonlocal minimal surfaces; Stickiness phenomena; Strongly nonlocal regime
Settore MAT/05 - Analisi Matematica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Main3rd.pdf

Open Access dal 09/02/2020

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri
1-s2.0-S0294144918300921-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/609156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact