In this paper, we consider the asymptotic behavior of the fractional mean curvature when s→0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s∈(0,1) is small, in a bounded and connected open set with C2 boundary Ω⊂Rn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary. Also, we prove the continuity of the fractional mean curvature in all variables, for s∈[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.
Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter / C. Bucur, L. Lombardini, E. Valdinoci. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - (2018). [Epub ahead of print] [10.1016/j.anihpc.2018.08.003]
Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
C. Bucur
Primo
;L. Lombardini
Secondo
;E. Valdinoci
Ultimo
2018
Abstract
In this paper, we consider the asymptotic behavior of the fractional mean curvature when s→0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s∈(0,1) is small, in a bounded and connected open set with C2 boundary Ω⊂Rn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary. Also, we prove the continuity of the fractional mean curvature in all variables, for s∈[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.File | Dimensione | Formato | |
---|---|---|---|
Main3rd.pdf
Open Access dal 09/02/2020
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0294144918300921-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.