Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.

Buchberger-Zacharias Theory of multivariate Ore extensions / M. Ceria, T. Mora. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 221:12(2017 Dec), pp. 2974-3026.

Buchberger-Zacharias Theory of multivariate Ore extensions

Ceria Michela;
2017-12

Abstract

Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.
Settore MAT/02 - Algebra
JOURNAL OF PURE AND APPLIED ALGEBRA
Article (author)
File in questo prodotto:
File Dimensione Formato  
OreExt.pdf

accesso aperto

296.82 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022404917300361-main.pdf

non disponibili

812.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/608769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact