Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.
Buchberger-Zacharias Theory of multivariate Ore extensions / M. Ceria, T. Mora. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 221:12(2017 Dec), pp. 2974-3026. [10.1016/j.jpaa.2017.02.011]
Buchberger-Zacharias Theory of multivariate Ore extensions
M. Ceria
Primo
;
2017
Abstract
Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
OreExt.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
296.82 kB
Formato
Adobe PDF
|
296.82 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022404917300361-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
812.77 kB
Formato
Adobe PDF
|
812.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.