The aim of this paper is to count 0-dimensional stable and strongly stable ideals in 2 and 3 variables, given their (constant) affine Hilbert polynomial p, by means of a bijection between these ideals and some integer partitions of p, which can be counted via determinantal formulas. This will be achieved by the Bar Code, a bidimensional diagram that allows to represent any finite set of terms M and desume many properties of the corresponding monomial ideal I, if M is an order ideal.
Bar code for monomial ideals / M. Ceria. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 91:Special Issue(2019 Apr), pp. 30-56. [Epub ahead of print] ((Intervento presentato al 14. convegno MEGA2017 International Conference on Effective Methods in Algebraic Geometry : June, 12th – 16th tenutosi a Nizza nel 2017 [10.1016/j.jsc.2018.06.012].
Bar code for monomial ideals
M. Ceria
2019
Abstract
The aim of this paper is to count 0-dimensional stable and strongly stable ideals in 2 and 3 variables, given their (constant) affine Hilbert polynomial p, by means of a bijection between these ideals and some integer partitions of p, which can be counted via determinantal formulas. This will be achieved by the Bar Code, a bidimensional diagram that allows to represent any finite set of terms M and desume many properties of the corresponding monomial ideal I, if M is an order ideal.File | Dimensione | Formato | |
---|---|---|---|
BarCode_reviewed_version.pdf
Open Access dal 14/02/2020
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
244.13 kB
Formato
Adobe PDF
|
244.13 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0747717118300774-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
702.99 kB
Formato
Adobe PDF
|
702.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.