We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme
KAM for autonomous quasi-linear perturbations of mKdV / P. Baldi, M. Berti, R. Montalto. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 2198-2759. - 9:2(2016 Jun), pp. 143-188.
KAM for autonomous quasi-linear perturbations of mKdV
R. Montalto
2016
Abstract
We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme| File | Dimensione | Formato | |
|---|---|---|---|
|
Baldi2016_Article_KAMForAutonomousQuasi-linearPe.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2434:607451.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
608.89 kB
Formato
Adobe PDF
|
608.89 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




