We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme

KAM for autonomous quasi-linear perturbations of mKdV / P. Baldi, M. Berti, R. Montalto. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 2198-2759. - 9:2(2016 Jun), pp. 143-188.

KAM for autonomous quasi-linear perturbations of mKdV

R. Montalto
2016

Abstract

We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
giu-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Baldi2016_Article_KAMForAutonomousQuasi-linearPe.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2434:607451.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 608.89 kB
Formato Adobe PDF
608.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/607451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact