In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution

Quasi-periodic solutions for the forced Kirchhoff equation on T^d / L. Corsi, R. Montalto. - In: NONLINEARITY. - ISSN 0951-7715. - 31:11(2018 Oct 10), pp. 5075-5109. [10.1088/1361-6544/aad6fe]

Quasi-periodic solutions for the forced Kirchhoff equation on T^d

R. Montalto
2018-10-10

Abstract

In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
liv-ric-kirkhhoff-revised.pdf

embargo fino al 24/01/2020

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 424.94 kB
Formato Adobe PDF
424.94 kB Adobe PDF Visualizza/Apri
Corsi_2018_Nonlinearity_31_5075.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/605967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact