In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution
Quasi-periodic solutions for the forced Kirchhoff equation on T^d / L. Corsi, R. Montalto. - In: NONLINEARITY. - ISSN 0951-7715. - 31:11(2018 Oct 10), pp. 5075-5109. [10.1088/1361-6544/aad6fe]
Quasi-periodic solutions for the forced Kirchhoff equation on T^d
R. Montalto
2018
Abstract
In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution| File | Dimensione | Formato | |
|---|---|---|---|
|
liv-ric-kirkhhoff-revised.pdf
Open Access dal 25/01/2020
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
424.94 kB
Formato
Adobe PDF
|
424.94 kB | Adobe PDF | Visualizza/Apri |
|
Corsi_2018_Nonlinearity_31_5075.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




