We address parameter estimation in two-level systems exhibiting level anticrossing and prove that universally optimal strategies for parameter estimation may be designed. In fact, we find a parameter-independent measurement scheme, leading to the ultimate quantum precision, independently of the value of the parameter of interest. Optimal estimation may be achieved also at high temperature, depending on the structure of the two-level Hamiltonian. Finally, we discuss parameter estimation based on dynamical strategies, and a number of specific applications.

Quantum metrology at level anticrossing / L. Ghirardi, I. Siloi, P. Bordone, F. Troiani, M.G.A. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 97:1(2018 Jan 19).

Quantum metrology at level anticrossing

M.G.A. Paris
Ultimo
2018

Abstract

We address parameter estimation in two-level systems exhibiting level anticrossing and prove that universally optimal strategies for parameter estimation may be designed. In fact, we find a parameter-independent measurement scheme, leading to the ultimate quantum precision, independently of the value of the parameter of interest. Optimal estimation may be achieved also at high temperature, depending on the structure of the two-level Hamiltonian. Finally, we discuss parameter estimation based on dynamical strategies, and a number of specific applications.
Atomic and Molecular Physics, and Optics
Settore FIS/03 - Fisica della Materia
19-gen-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevA.97.012120.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 296.27 kB
Formato Adobe PDF
296.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/605354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact