We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses.

A conjectural extension of Hecke’s converse theorem / S. Bettin, J.W. Bober, A.R. Booker, B. Conrey, M. Lee, G. Molteni, T. Oliver, D.J. Platt, R.S. Steiner. - In: RAMANUJAN JOURNAL. - ISSN 1382-4090. - 47:3(2018 Dec 01), pp. 659-684. [10.1007/s11139-017-9953-y]

A conjectural extension of Hecke’s converse theorem

G. Molteni;
2018

Abstract

We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses.
Converse theorems; Modular forms; Ramanujan sums; Algebra and Number Theory
Settore MAT/05 - Analisi Matematica
   Number Theory and Arithmetic Geometry
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015XBNXYC_004
1-dic-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
42-molteni-A_conjectural_extension_of_Hecke's_converse_theorem.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 463.11 kB
Formato Adobe PDF
463.11 kB Adobe PDF Visualizza/Apri
Bettin2018_Article_AConjecturalExtensionOfHeckeSC.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 571.18 kB
Formato Adobe PDF
571.18 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/603707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact