Non-centralised behaviour such as those that characterise swarm robotics systems are vulnerable to intentional disruptions from internal or external adversarial sources. Threats in the context of swarm robotics can be executed through goal, behaviour, environment or communication manipulation. Experimental studies in this area are still sparse. We study an attack scenario performed by actively modifying the data between authorised participants. We formulate a robust probabilistic adaptive defence mechanism which does not aim at identifying malicious agents, but to provide the swarm with the means to minimise the consequences of the attack. The mechanism relies on a dynamic modification of the probability of agents to change their current information in view of new contradictory or corroborating incoming data. We investigate several experimental conditions in simulation. The results show that the presence of adversaries in the swarm hinders reaching consensus to the majority opinion when using a baseline method, but that there are several conditions in which our adaptive defence mechanism is highly efficient.

Swarm Attack: A Self-organized Model to Recover from Malicious Communication Manipulation in a Swarm of Simple Simulated Agents / G. Primiero, E. Tuci, J. Tagliabue, E. Ferrante (LECTURE NOTES IN COMPUTER SCIENCE). - In: Swarm Intelligence / [a cura di] M. Dorigo, M. Birattari, C. Blum, A.L. Christensen, A. Reina, V. Trianni. - [s.l] : Springer, 2018. - ISBN 9783030005320. - pp. 213-224 (( Intervento presentato al 11. convegno ANTS tenutosi a Roma nel 2018 [10.1007/978-3-030-00533-7_17].

Swarm Attack: A Self-organized Model to Recover from Malicious Communication Manipulation in a Swarm of Simple Simulated Agents

G. Primiero
;
2018

Abstract

Non-centralised behaviour such as those that characterise swarm robotics systems are vulnerable to intentional disruptions from internal or external adversarial sources. Threats in the context of swarm robotics can be executed through goal, behaviour, environment or communication manipulation. Experimental studies in this area are still sparse. We study an attack scenario performed by actively modifying the data between authorised participants. We formulate a robust probabilistic adaptive defence mechanism which does not aim at identifying malicious agents, but to provide the swarm with the means to minimise the consequences of the attack. The mechanism relies on a dynamic modification of the probability of agents to change their current information in view of new contradictory or corroborating incoming data. We investigate several experimental conditions in simulation. The results show that the presence of adversaries in the swarm hinders reaching consensus to the majority opinion when using a baseline method, but that there are several conditions in which our adaptive defence mechanism is highly efficient.
Settore M-FIL/02 - Logica e Filosofia della Scienza
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
paper_65.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 258.51 kB
Formato Adobe PDF
258.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/597634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact