The cholesteryl ester transfer protein (CETP) system moves cholesteryl esters (CE) from high density lipoproteins (HDL) to lower density lipoproteins, i.e. very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) in exchange for triglycerides (TGs). This shuttle process will ultimately form complexes facilitating a bidirectional exchange of CE and TGs, the end process being CE delivery to catabolic sites. The CETP system is generally characteristic of higher animal species; lower species, not provided with this system, have higher and enlarged HDL enriched with apo E, suitable for tissue receptor interaction. Discovery of the CETP system has led to the development of agents interfering with CETP, thus elevating HDL-C and potentially preventing cardiovascular (CV) disease. Activation of CETP leads instead to reduced HDL-C levels, but also to an enhanced removal of CE from tissues. CETP antagonists are mainly small molecules (torcetrapib, anacetrapib, evacetrapib, dalcetrapib) and have provided convincing evidence of an HDL-C raising activity, but disappointing results in trials of CV prevention. In contrast, the CETP agonist probucol leads to HDL-C lowering followed by an increment of tissue cholesterol removal (reduction of xanthomas, xanthelasmas) and positive findings in secondary prevention trials. The drug has an impressive anti-inflammatory profile (markedly reduced IL1β expression). Newer agents, some of natural origin, have additional valuable pharmacodynamic properties. The pharmacological approach to the CETP system remains enigmatic, although the failure of CETP antagonists has dampened enthusiasm. Studies on the system, a crossroad for any investigation on cholesterol metabolism, have however provided crucial contributions and will still be confronting any scientist working on CV prevention.

Cholesteryl ester transfer protein: An enigmatic pharmacology – Antagonists and agonists / S. Yamashita, M. Ruscica, C. Macchi, A. Corsini, Y. Matsuzawa, C.R. Sirtori. - In: ATHEROSCLEROSIS. - ISSN 0021-9150. - (2018 Nov), pp. 286-298. [10.1016/j.atherosclerosis.2018.09.035]

Cholesteryl ester transfer protein: An enigmatic pharmacology – Antagonists and agonists

M. Ruscica
Co-primo
Conceptualization
;
C. Macchi
Conceptualization
;
A. Corsini
Supervision
;
2018

Abstract

The cholesteryl ester transfer protein (CETP) system moves cholesteryl esters (CE) from high density lipoproteins (HDL) to lower density lipoproteins, i.e. very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) in exchange for triglycerides (TGs). This shuttle process will ultimately form complexes facilitating a bidirectional exchange of CE and TGs, the end process being CE delivery to catabolic sites. The CETP system is generally characteristic of higher animal species; lower species, not provided with this system, have higher and enlarged HDL enriched with apo E, suitable for tissue receptor interaction. Discovery of the CETP system has led to the development of agents interfering with CETP, thus elevating HDL-C and potentially preventing cardiovascular (CV) disease. Activation of CETP leads instead to reduced HDL-C levels, but also to an enhanced removal of CE from tissues. CETP antagonists are mainly small molecules (torcetrapib, anacetrapib, evacetrapib, dalcetrapib) and have provided convincing evidence of an HDL-C raising activity, but disappointing results in trials of CV prevention. In contrast, the CETP agonist probucol leads to HDL-C lowering followed by an increment of tissue cholesterol removal (reduction of xanthomas, xanthelasmas) and positive findings in secondary prevention trials. The drug has an impressive anti-inflammatory profile (markedly reduced IL1β expression). Newer agents, some of natural origin, have additional valuable pharmacodynamic properties. The pharmacological approach to the CETP system remains enigmatic, although the failure of CETP antagonists has dampened enthusiasm. Studies on the system, a crossroad for any investigation on cholesterol metabolism, have however provided crucial contributions and will still be confronting any scientist working on CV prevention.
Cholesteryl ester transfer protein; Inhibitor; Anacetrapib; Torcetrapib; Dalcetrapib; Evacetrapib; High density lipoproteins; Reverse cholesterol transport; Probucol; Leoligin
Settore MED/04 - Patologia Generale
Settore BIO/14 - Farmacologia
nov-2018
1-ott-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Shizuya Yamashita.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/593276
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact