A new series of derivatives of the PPARα/γ dual agonist 1 allowed us to identify the ligand ( S)-6 as a potent partial agonist of both PPARα and γ subtypes. X-ray studies in PPARγ revealed two different binding modes of ( S)-6 to the canonical site. However, ( S)-6 was also able to bind an alternative site as demonstrated by transactivation assay in the presence of a canonical PPARγ antagonist and supported from docking experiments. This compound did not activate the PPARγ-dependent program of adipocyte differentiation inducing a very less severe lipid accumulation compared to rosiglitazone but increased the insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Finally, ( S)-6 inhibited the Cdk5-mediated phosphorylation of PPARγ at serine 273 that is currently considered the mechanism by which some PPARγ partial agonists exert antidiabetic effects similar to thiazolidinediones, without showing their typical side effects. This is the first PPARα/γ dual agonist reported to show this inhibitory effect representing the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.

Identification of the First PPARα/γ Dual Agonist Able to Bind to Canonical and Alternative Sites of PPARγ and to Inhibit Its Cdk5-Mediated Phosphorylation / A. Laghezza, L. Piemontese, C. Cerchia, R. Montanari, D. Capelli, M. Giudici, M. Crestani, P. Tortorella, F. Peiretti, G. Pochetti, A. Lavecchia, F. Loiodice. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 61:18(2018 Sep 27), pp. 8282-8298. [10.1021/acs.jmedchem.8b00835]

Identification of the First PPARα/γ Dual Agonist Able to Bind to Canonical and Alternative Sites of PPARγ and to Inhibit Its Cdk5-Mediated Phosphorylation

D. Capelli;M. Crestani
Investigation
;
2018

Abstract

A new series of derivatives of the PPARα/γ dual agonist 1 allowed us to identify the ligand ( S)-6 as a potent partial agonist of both PPARα and γ subtypes. X-ray studies in PPARγ revealed two different binding modes of ( S)-6 to the canonical site. However, ( S)-6 was also able to bind an alternative site as demonstrated by transactivation assay in the presence of a canonical PPARγ antagonist and supported from docking experiments. This compound did not activate the PPARγ-dependent program of adipocyte differentiation inducing a very less severe lipid accumulation compared to rosiglitazone but increased the insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Finally, ( S)-6 inhibited the Cdk5-mediated phosphorylation of PPARγ at serine 273 that is currently considered the mechanism by which some PPARγ partial agonists exert antidiabetic effects similar to thiazolidinediones, without showing their typical side effects. This is the first PPARα/γ dual agonist reported to show this inhibitory effect representing the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.
Settore BIO/10 - Biochimica
27-set-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Laghezza et al JMedChem 2018.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 5.71 MB
Formato Adobe PDF
5.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/593124
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact