Podocytes are postmitotic renal glomerular cells with multiple ramifications that extend from the cell body. Processes departing from a podocyte interdigitate with corresponding projections from neighboring cells and form an intricate web that enwraps the glomerular capillary completely. Podocyte processes are interconnected by the slit diaphragm, an adhesion junction mostly formed by Ig-like molecules, cadherins/protocadherins, ephrin/eph, and neurexin molecules organized in an assembly that resembles synaptic junctions. Podocyte failure is primarily or secondarily implicated in all forms of proteinuric glomerular diseases, as confirmed by the morphological changes of their elaborate cell architecture detectable by electron microscopy. Importantly, mutations of podocyte proteins are responsible for the most severe forms of congenital nephrotic syndrome. In the last 15 years, progressive technological advances have aided the study of podocyte biology and pathology, confirming the relevance of podocyte molecules and signaling pathways for the function of the glomerular filter. This review will examine the most important and newest discoveries in the field, which is rapidly evolving, hopefully leading to a detailed knowledge of this fascinating cell and to the development of specific therapeutic options for proteinuric diseases.

Podocytes: Recent biomolecular developments / S. Armelloni, A. Corbelli, L. Giardino, M. Li, M. Ikehata, D. Mattinzoli, P. Messa, C. Pignatari, S. Watanabe, M.P. Rastaldi. - In: BIOMOLECULAR CONCEPTS. - ISSN 1868-5021. - 5:4(2014), pp. 319-330. [10.1515/bmc-2014-0020]

Podocytes: Recent biomolecular developments

L. Giardino;P. Messa;
2014

Abstract

Podocytes are postmitotic renal glomerular cells with multiple ramifications that extend from the cell body. Processes departing from a podocyte interdigitate with corresponding projections from neighboring cells and form an intricate web that enwraps the glomerular capillary completely. Podocyte processes are interconnected by the slit diaphragm, an adhesion junction mostly formed by Ig-like molecules, cadherins/protocadherins, ephrin/eph, and neurexin molecules organized in an assembly that resembles synaptic junctions. Podocyte failure is primarily or secondarily implicated in all forms of proteinuric glomerular diseases, as confirmed by the morphological changes of their elaborate cell architecture detectable by electron microscopy. Importantly, mutations of podocyte proteins are responsible for the most severe forms of congenital nephrotic syndrome. In the last 15 years, progressive technological advances have aided the study of podocyte biology and pathology, confirming the relevance of podocyte molecules and signaling pathways for the function of the glomerular filter. This review will examine the most important and newest discoveries in the field, which is rapidly evolving, hopefully leading to a detailed knowledge of this fascinating cell and to the development of specific therapeutic options for proteinuric diseases.
actin cytoskeleton; foot processes; nephrin; podocyte; proteinuria; slit diaphragm
Settore MED/14 - Nefrologia
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
[Biomolecular Concepts] Podocytes recent biomolecular developments.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/588717
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact