Cell-cycle defects are responsible for cancer onset and growth. We studied the expression profile of 60 genes involved in cell cycle in a series of malignant mesotheliomas (MMs), normal pleural tissues, and MM cell cultures using a quantitative polymerase chain reaction-based, low-density array. Nine genes were significantly deregulated in MMs compared with normal controls. Seven genes were overexpressed. in MMs, including the following: CDKN2C, cdc6, cyclin H, cyclin B1, CDC2, FoxM1, and Chk1, whereas Ube1L and cyclin D2 were underexpressed. Chk1 is a principal mediator of cell-cycle checkpoints in response to genotoxic stress. We confirmed the overexpression of Chk1 in an independent set of 87 MMs by immunohistochemistry using tissue microarrays. To determine whether Chk1 down-regulation would affect cell-cycle control and cell survival, we transfected either control or Chk1 siRNA into two mesothelioma cell lines and a nontumorigenic (Met5a) cell line. Results showed that Chk1 knockdown increased the apoptotic fraction of MM cells and induced an S phase block in Met5a cells. Furthermore, Chk1 silencing sensitized P53-null MM cells to both an S phase block and apoptosis in the presence of doxorubicin. Our results indicate that cell-cycle gene expression analysis by quantitative polymerase chain reaction can identify potential targets for novel therapies. Chk1 knockdown could provide a novel therapeutic approach to arrest cell-cycle progression in MM cells, thus increasing the rate of cell death.
Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis / S. Romagnoli, E. Fasoli, V. Vaira, M. Falleni, C. Pellegrini, A. Catania, M. Roncalli, A. Marchetti, L. Santambrogio, G. Coggi, S. Bosari. - In: THE AMERICAN JOURNAL OF PATHOLOGY. - ISSN 0002-9440. - 174:3(2009 Mar), pp. 762-770. [10.2353/ajpath.2009.080721]
Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis
S. RomagnoliPrimo
;E. FasoliSecondo
;V. Vaira;M. Falleni;M. Roncalli;L. Santambrogio;G. CoggiPenultimo
;S. BosariUltimo
2009
Abstract
Cell-cycle defects are responsible for cancer onset and growth. We studied the expression profile of 60 genes involved in cell cycle in a series of malignant mesotheliomas (MMs), normal pleural tissues, and MM cell cultures using a quantitative polymerase chain reaction-based, low-density array. Nine genes were significantly deregulated in MMs compared with normal controls. Seven genes were overexpressed. in MMs, including the following: CDKN2C, cdc6, cyclin H, cyclin B1, CDC2, FoxM1, and Chk1, whereas Ube1L and cyclin D2 were underexpressed. Chk1 is a principal mediator of cell-cycle checkpoints in response to genotoxic stress. We confirmed the overexpression of Chk1 in an independent set of 87 MMs by immunohistochemistry using tissue microarrays. To determine whether Chk1 down-regulation would affect cell-cycle control and cell survival, we transfected either control or Chk1 siRNA into two mesothelioma cell lines and a nontumorigenic (Met5a) cell line. Results showed that Chk1 knockdown increased the apoptotic fraction of MM cells and induced an S phase block in Met5a cells. Furthermore, Chk1 silencing sensitized P53-null MM cells to both an S phase block and apoptosis in the presence of doxorubicin. Our results indicate that cell-cycle gene expression analysis by quantitative polymerase chain reaction can identify potential targets for novel therapies. Chk1 knockdown could provide a novel therapeutic approach to arrest cell-cycle progression in MM cells, thus increasing the rate of cell death.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.