Despite the poor solubility in organic solvents, poly (3,4-ethylenedioxythiophene) (PEDOT) is one of the most successful conducting polymers. To improve PEDOT conductivity, the dopants commonly used are molecules/polymers carrying sulfonic functionalities. In addition to these species, sulfonated polyarylethersulfone (SPAES), obtained via homogeneous synthesis with different degrees of sulfonation (DS), can be used thanks to both the tight control over the DS and the charge separation present in SPAES structure. Here, PEDOTs having enhanced solubility in the chosen reaction solvents (N,N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone) were synthesized via a high-concentration solvent-based emulsion polymerization with very low amounts of SPAES as dopant (1% w/w with respect to EDOT monomer), characterized by different DS. The influence of solvents and of the adopted doping agent was studied on PEDOT_SPAESs analyzing (i) the chemical structure, comparing via X-ray diffraction (XRD) the crystalline structures of undoped and commercial PEDOTs with PEDOT_SPAES’ amorphous structure; (ii) solvatochromic behavior, observing UV absorption wavelength variation as solvents and SPAES’ DS change; and (iii) electrochemical properties: voltammetric peak heights of PEDOT_SPAES cast onto glassy carbon electrodes differ for each solvent and in general are better than the ones obtained for neat SPAES, PEDOTs, and glassy carbon.

A Combined XRD, Solvatochromic, and Cyclic Voltammetric Study of Poly (3,4-Ethylenedioxythiophene) Doped with Sulfonated Polyarylethersulfones: Towards New Conducting Polymers / V. Sabatini, V. Pifferi, S. Checchia, S. Rebeccani, H. Farina, M.A. Ortenzi, L. Falciola. - In: POLYMERS. - ISSN 2073-4360. - 10:7(2018 Jul 13).

A Combined XRD, Solvatochromic, and Cyclic Voltammetric Study of Poly (3,4-Ethylenedioxythiophene) Doped with Sulfonated Polyarylethersulfones: Towards New Conducting Polymers

V. Sabatini
Primo
;
V. Pifferi
Secondo
;
S. Checchia;H. Farina;M.A. Ortenzi
Penultimo
;
L. Falciola
Ultimo
2018-07-13

Abstract

Despite the poor solubility in organic solvents, poly (3,4-ethylenedioxythiophene) (PEDOT) is one of the most successful conducting polymers. To improve PEDOT conductivity, the dopants commonly used are molecules/polymers carrying sulfonic functionalities. In addition to these species, sulfonated polyarylethersulfone (SPAES), obtained via homogeneous synthesis with different degrees of sulfonation (DS), can be used thanks to both the tight control over the DS and the charge separation present in SPAES structure. Here, PEDOTs having enhanced solubility in the chosen reaction solvents (N,N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone) were synthesized via a high-concentration solvent-based emulsion polymerization with very low amounts of SPAES as dopant (1% w/w with respect to EDOT monomer), characterized by different DS. The influence of solvents and of the adopted doping agent was studied on PEDOT_SPAESs analyzing (i) the chemical structure, comparing via X-ray diffraction (XRD) the crystalline structures of undoped and commercial PEDOTs with PEDOT_SPAES’ amorphous structure; (ii) solvatochromic behavior, observing UV absorption wavelength variation as solvents and SPAES’ DS change; and (iii) electrochemical properties: voltammetric peak heights of PEDOT_SPAES cast onto glassy carbon electrodes differ for each solvent and in general are better than the ones obtained for neat SPAES, PEDOTs, and glassy carbon.
conducting polymer; poly (3,4-ethylenedioxythiophene); sulfonated polyarylethersulfone; doping agent; XRD analyses; solvatochromism; modified electrode; casting solvent effect
Settore CHIM/02 - Chimica Fisica
13-lug-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
polymers-10-00770.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 9.92 MB
Formato Adobe PDF
9.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/582043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact