This article engages the much-debated role of mathematics in Bacon's philosophy and inductive method at large. The many references to mathematics in Bacon's works are considered in the context of the humanist reform of the curriculum studiorum and, in particular, through a comparison with the kinds of natural and intellectual subtlety as they are defined by many sixteenth-century authors, including Cardano, Scaliger and Montaigne. Additionally, this article gives a nuanced background to the 'subtlety' commonly thought to have been eschewed by Bacon and by Bacon's self-proclaimed followers in the Royal Society of London. The aim of this article is ultimately to demonstrate that Bacon did not reject the use of mathematics in natural philosophy altogether. Instead, he hoped that following the Great Instauration a kind of non-abstract mathematics could be founded: a kind of mathematics which was to serve natural philosophy by enabling men to grasp the intrinsic subtlety of nature. Rather than mathematizing nature, it was mathematics that needed to be 'naturalized'.

Mathematical subtleties and scientific knowledge : Francis Bacon and mathematics, at the crossing of two traditions / G. Mori. - In: BRITISH JOURNAL FOR THE HISTORY OF SCIENCE. - ISSN 0007-0874. - 50:1(2017), pp. 1-21. [10.1017/S0007087416001163]

Mathematical subtleties and scientific knowledge : Francis Bacon and mathematics, at the crossing of two traditions

G. Mori
2017

Abstract

This article engages the much-debated role of mathematics in Bacon's philosophy and inductive method at large. The many references to mathematics in Bacon's works are considered in the context of the humanist reform of the curriculum studiorum and, in particular, through a comparison with the kinds of natural and intellectual subtlety as they are defined by many sixteenth-century authors, including Cardano, Scaliger and Montaigne. Additionally, this article gives a nuanced background to the 'subtlety' commonly thought to have been eschewed by Bacon and by Bacon's self-proclaimed followers in the Royal Society of London. The aim of this article is ultimately to demonstrate that Bacon did not reject the use of mathematics in natural philosophy altogether. Instead, he hoped that following the Great Instauration a kind of non-abstract mathematics could be founded: a kind of mathematics which was to serve natural philosophy by enabling men to grasp the intrinsic subtlety of nature. Rather than mathematizing nature, it was mathematics that needed to be 'naturalized'.
Settore M-FIL/06 - Storia della Filosofia
Settore M-STO/05 - Storia della Scienza e delle Tecniche
BRITISH JOURNAL FOR THE HISTORY OF SCIENCE
Article (author)
File in questo prodotto:
File Dimensione Formato  
MORI, Mathematical subtleties and scientific knowledge.pdf

non disponibili

Tipologia: Publisher's version/PDF
Dimensione 456.07 kB
Formato Adobe PDF
456.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/581872
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact