Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental and human vaccine vector for its lack of replication in mammalian cells and high expression of heterologous genes. Recombinant MVA technology can be improved greatly by combining transient host-range selection (based on the restoration in MVA of the deleted vaccinia gene K1L) with the differential expression of fluorescent proteins. Recombinant virus results from swapping a red protein gene (in the acceptor virus) with a cassette of the transfer plasmid comprising the transgene and the green marker K1Lgfp (a chimeric gene comprising K1L and EGFP). Recombinant selection is performed in the selective host RK13. Finally, in the non-selective host BHK-21, a single crossover between identical flanking regions excises the marker gene. The three types of viruses involved (red parental, green intermediate and colourless final recombinant) are visualized differentially by fluorescence microscopy or fluoro-imaging of terminal dilution microcultures, leading to a straightforward and efficient purification protocol. This method (Red-to-Green gene swapping) reduces greatly the time needed to obtain marker-free recombinant MVA and increases the reliability of the construction process.

Marker gene swapping facilitates recombinant Modified Vaccinia Virus Ankara production by host-range selection / G. Di Lullo, E. Soprana, M. Panigada, A. Palini, V. Erfle, C. Staib, G. Sutter, A.G. Siccardi. - In: JOURNAL OF VIROLOGICAL METHODS. - ISSN 0166-0934. - 156:1-2(2009 Mar), pp. 37-43.

Marker gene swapping facilitates recombinant Modified Vaccinia Virus Ankara production by host-range selection

G. Di Lullo
Primo
;
M. Panigada;A.G. Siccardi
Ultimo
2009

Abstract

Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental and human vaccine vector for its lack of replication in mammalian cells and high expression of heterologous genes. Recombinant MVA technology can be improved greatly by combining transient host-range selection (based on the restoration in MVA of the deleted vaccinia gene K1L) with the differential expression of fluorescent proteins. Recombinant virus results from swapping a red protein gene (in the acceptor virus) with a cassette of the transfer plasmid comprising the transgene and the green marker K1Lgfp (a chimeric gene comprising K1L and EGFP). Recombinant selection is performed in the selective host RK13. Finally, in the non-selective host BHK-21, a single crossover between identical flanking regions excises the marker gene. The three types of viruses involved (red parental, green intermediate and colourless final recombinant) are visualized differentially by fluorescence microscopy or fluoro-imaging of terminal dilution microcultures, leading to a straightforward and efficient purification protocol. This method (Red-to-Green gene swapping) reduces greatly the time needed to obtain marker-free recombinant MVA and increases the reliability of the construction process.
Fluorescent proteins; Host-range selection; K1Lgfp; Marker gene swapping; Recombinant MVA
Settore BIO/13 - Biologia Applicata
mar-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/58112
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact