Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.
Isogeometric BDDC deluxe preconditioners for linear elasticity / L.F. Pavarino, S. Scacchi, O.B. Widlund, S. Zampini. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 28:7(2018 Jun), pp. 1337-1370.
Isogeometric BDDC deluxe preconditioners for linear elasticity
L.F. Pavarino;S. Scacchi;S. Zampini
2018
Abstract
Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.File | Dimensione | Formato | |
---|---|---|---|
pavarinoSWZ_2018.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.