Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth's mantle. Discoveries of some of these minerals in super-deep' diamonds - formed between two hundred and about one thousand kilometres into the lower mantle - have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral - expected to be the fourth most abundant in the Earth - has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively heavy' carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.

CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle / F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D.G. Pearson, M.G. Pamato, M. Alvaro, L. Peruzzo, J.J. Gurney, A.E. Moore, J. Davidson. - In: NATURE. - ISSN 0028-0836. - 555:7695(2018), pp. 237-241.

CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle

N. Rotiroti;
2018

Abstract

Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth's mantle. Discoveries of some of these minerals in super-deep' diamonds - formed between two hundred and about one thousand kilometres into the lower mantle - have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral - expected to be the fourth most abundant in the Earth - has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively heavy' carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.
Multidisciplinary
Settore GEO/07 - Petrologia e Petrografia
Settore GEO/06 - Mineralogia
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
nature25972.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/580202
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 113
social impact