We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras.

Spherical subcategories in representation theory / A. Hochenegger, M. Kalck, D. Ploog. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 291:1-2(2019), pp. 113-147. [10.1007/s00209-018-2075-4]

Spherical subcategories in representation theory

A. Hochenegger
Primo
;
2019

Abstract

We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras.
spherical object; spherelike object; spherical subcategory; spherelike poset; derived invariant; cluster-tilting finite-dimensional algebra; quiver
Settore MAT/03 - Geometria
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/577339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact