We describe periods of irreducible holomorphic symplectic manifolds of K3[n]K3[n]-type with a non-symplectic automorphism of prime order p≥3p≥3. These turn out to lie on complex ball quotients and we are able to give a precise characterization of when the period map is bijective by introducing the notion of K(T)K(T)-generality.

Complex ball quotients from manifolds of K3^[n]-type / S. Boissière, C. Camere, A. Sarti. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 223:3(2019 Mar), pp. 1123-1138. [10.1016/j.jpaa.2018.05.017]

Complex ball quotients from manifolds of K3^[n]-type

C. Camere
;
2019-03

Abstract

We describe periods of irreducible holomorphic symplectic manifolds of K3[n]K3[n]-type with a non-symplectic automorphism of prime order p≥3p≥3. These turn out to lie on complex ball quotients and we are able to give a precise characterization of when the period map is bijective by introducing the notion of K(T)K(T)-generality.
Settore MAT/03 - Geometria
mag-2018
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/576935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact