The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables. These models are useful for their ability to capture and represent the system of independence relationships among the variables involved, even when complex. This work concerns categorical variables and the possibility to represent symmetric and asymmetric dependences among categorical variables. For this reason we use the Chain Graphical Models proposed by Andersson, Madigan and Perlman (Scand. J. Stat. 28 (2001) 33-85), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric relationships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a subclass of smooth GMs II by parametrizing the probability function through marginal log-linear models. Furthermore, the proposed models are applied to a data-set from the European Value Study for the year 2008 (EVS (2010)).

Type II chain graph models for categorical data : a smooth subclass / F. Nicolussi, R. Colombi. - In: BERNOULLI. - ISSN 1350-7265. - 23:2(2017), pp. 863-883. [10.3150/15-BEJ762]

Type II chain graph models for categorical data : a smooth subclass

F. Nicolussi
Primo
;
2017

Abstract

The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables. These models are useful for their ability to capture and represent the system of independence relationships among the variables involved, even when complex. This work concerns categorical variables and the possibility to represent symmetric and asymmetric dependences among categorical variables. For this reason we use the Chain Graphical Models proposed by Andersson, Madigan and Perlman (Scand. J. Stat. 28 (2001) 33-85), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric relationships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a subclass of smooth GMs II by parametrizing the probability function through marginal log-linear models. Furthermore, the proposed models are applied to a data-set from the European Value Study for the year 2008 (EVS (2010)).
Categorical variables; Chain Graph Models; Conditional indipendence models; Marginal models; Statistics and Probability
Settore SECS-S/01 - Statistica
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
1486177386.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 253.89 kB
Formato Adobe PDF
253.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/575837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact