In gamma spectroscopy experiments obtaining precise timing information is fundamental, for instance in heavy-ion fusion-evaporation experiments to discriminate the unwanted contribution of neutrons by time of flight measurements or in experiments with radioactive ion beams to clean the gamma spectra from background radiation not coming from the target position. Next generation gamma ray tracking arrays like AGATA will cover the full 4p solid angle with large volume segmented HPGe detectors. In these detectors a 5mm position sensitivity is achieved trough the segmentation of the outer electrode and the analysis of the current pulse shape (Pulse Shape Analysis, PSA). Large volume HPGe detectors have a time resolution limited to about 7-10 ns. This is due mainly to the presence of electric noise and to the fact that the rise front of the detector signal changes shape depending from the interaction position. The timing algorithm used in most of the in beam gamma spectroscopy experiments is the Constant Fraction Discriminator (CFD) which starts from the assumption of having as input a signals with a perfectly linear rise front and identical shape. The aim of this work is to investigate the possibility to eliminate the uncertainty due to the signal shape variation by using PSA techniques, thus improving the HPGe detector timing resolution.

Implementation of T0 calculation with RS algorithm / F.C.L. Crespi. ((Intervento presentato al 7. convegno AGATA week tenutosi a Uppsala, Sweden nel 2008.

Implementation of T0 calculation with RS algorithm

F.C.L. Crespi
Primo
2008

Abstract

In gamma spectroscopy experiments obtaining precise timing information is fundamental, for instance in heavy-ion fusion-evaporation experiments to discriminate the unwanted contribution of neutrons by time of flight measurements or in experiments with radioactive ion beams to clean the gamma spectra from background radiation not coming from the target position. Next generation gamma ray tracking arrays like AGATA will cover the full 4p solid angle with large volume segmented HPGe detectors. In these detectors a 5mm position sensitivity is achieved trough the segmentation of the outer electrode and the analysis of the current pulse shape (Pulse Shape Analysis, PSA). Large volume HPGe detectors have a time resolution limited to about 7-10 ns. This is due mainly to the presence of electric noise and to the fact that the rise front of the detector signal changes shape depending from the interaction position. The timing algorithm used in most of the in beam gamma spectroscopy experiments is the Constant Fraction Discriminator (CFD) which starts from the assumption of having as input a signals with a perfectly linear rise front and identical shape. The aim of this work is to investigate the possibility to eliminate the uncertainty due to the signal shape variation by using PSA techniques, thus improving the HPGe detector timing resolution.
lug-2008
HPGe detectors ; timing ; gamma spectroscopy ; gamma ray tracking ; Pulse Shape Analysis ; PSA
Swedish Research Council
Uppsala University : Faculty of science and technology : Physics division
Implementation of T0 calculation with RS algorithm / F.C.L. Crespi. ((Intervento presentato al 7. convegno AGATA week tenutosi a Uppsala, Sweden nel 2008.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/57111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact