We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.

Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules / L. Desvillettes, G. Furioli, E. Terraneo. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 361:4(2009), pp. 1731-1747. [10.1090/S0002-9947-08-04574-1]

Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules

E. Terraneo
Ultimo
2009

Abstract

We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.
Cut-off and non-cut-off; Gevrey class; Homogeneous boltzmann equation; Propagation of regularity
Settore MAT/05 - Analisi Matematica
http://www.ams.org/tran/2009-361-04/S0002-9947-08-04574-1/home.html
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/56644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 35
social impact