Topological phase space disconnection has been recently found to be a general phenomenon in many-body spin system with anisotropic interaction. We show that the power law divergence of magnetic reversal time at the energy signaling such disconnection is generic for long-range interacting systems with an exponent proportional to the number of particles. We also study the modifications induced putting the system in contact with a thermal bath. Using the canonical formalism we analyze the magnetic reversal times at any temperature. Moreover, due to the divergence of reversal time at the energy disconnection threshold we can recover, using saddle point approximation, a simple exponential dependence on the inverse temperature showing the explicit relevance of the energy disconnection threshold for finite many-body interacting systems at finite temperature. This sets a general framework to understand the emergence of ferromagnetism in finite magnetic systems starting from microscopic models without phenomenological on-site barriers.

Magnetic reversal time in open long-range systems / F. Borgonovi, G.L. Celardo, B. Goncalves, L. Spadafora. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 77:6(2008 Jun 16).

Magnetic reversal time in open long-range systems

L. Spadafora
Ultimo
2008

Abstract

Topological phase space disconnection has been recently found to be a general phenomenon in many-body spin system with anisotropic interaction. We show that the power law divergence of magnetic reversal time at the energy signaling such disconnection is generic for long-range interacting systems with an exponent proportional to the number of particles. We also study the modifications induced putting the system in contact with a thermal bath. Using the canonical formalism we analyze the magnetic reversal times at any temperature. Moreover, due to the divergence of reversal time at the energy disconnection threshold we can recover, using saddle point approximation, a simple exponential dependence on the inverse temperature showing the explicit relevance of the energy disconnection threshold for finite many-body interacting systems at finite temperature. This sets a general framework to understand the emergence of ferromagnetism in finite magnetic systems starting from microscopic models without phenomenological on-site barriers.
Spin Systems ; Ergodicity ; Long Range ; Magnetic Reversal Time ; Ferromagmetism
16-giu-2008
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.3935v1.pdf
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/56613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact