Layer-by-Layer or self-assembly techniques can be used to prepare fluorescent polymer samples on glass coverslips serving as benchmark for two-photon excitation microscopy from conventional to 4Pi set-up, or more in general for sectioning microscopy.1-3 Layers can be realized as ultra-thin (≪ 100 nm) or thin (approx. 100 nm) characteristics coupled to different fluorescent molecules to be used for different microscopy applications. As well, stacks hosting different fluorescent molecules can be also produce. Thanks to their controllable thickness, uniformity and fluorescence properties, these polymer layers may serve as a simple and applicable standard to directly measure the z-response of different scanning optical microscopes. In two-photon excitation microscopy z-sectioning plays a central role and uniformity of illumination is crucial due to the non-linear behaviour of emission. Since the main characteristics of a particular image formation situation can be efficiently summarized in a Sectioned Imaging property chart (SIPchart),3 we think that coupling this calibration sample with SIPchart is a very important step towards quantitative microscopy. In this work we use these polymer layers to measure the z-response of confocal, two-photon excitation and 4Pi laser scanning microscopes, selecting properly ultra-thin and thin layers. Due to their uniformity over a wide region, i.e. coverslip surface, it is possible to quantify the zresponse of the system over a full field of view area. These samples are also useful for monitoring photobleaching behavior as function of the illumination intensity. Ultrathin layers are also useful to supersede the conventional technique of calculating the derivative of the axial edges of a thick fluorescent layer. Polymer layers can be efficiently used for real time alignment of the microscope.

SIPcharts using uniform ultra-thin and thin fluorescent layers for z-response measurements in two-photon excitation fluorescence microscopy / G. Vicidomini, J. Zwier, P. Bianchini, F. Cella, E. Ronzitti, S. Krol, T. Szellas, F. Brakenhoff, A. Diaspro - In: Multiphoton microscopy in the biomedical sciences 7. : 21-23 January 2007, San Jose, California, USA / [a cura di] A. Periasamy, P.T.C. So. - Bellingham : SPIE, 2007. - ISBN 9780819465559. - pp. 644224.1-644224.10 (( convegno Photonic west tenutosi a San Josè , CA , USA nel 2007.

SIPcharts using uniform ultra-thin and thin fluorescent layers for z-response measurements in two-photon excitation fluorescence microscopy

E. Ronzitti;
2007

Abstract

Layer-by-Layer or self-assembly techniques can be used to prepare fluorescent polymer samples on glass coverslips serving as benchmark for two-photon excitation microscopy from conventional to 4Pi set-up, or more in general for sectioning microscopy.1-3 Layers can be realized as ultra-thin (≪ 100 nm) or thin (approx. 100 nm) characteristics coupled to different fluorescent molecules to be used for different microscopy applications. As well, stacks hosting different fluorescent molecules can be also produce. Thanks to their controllable thickness, uniformity and fluorescence properties, these polymer layers may serve as a simple and applicable standard to directly measure the z-response of different scanning optical microscopes. In two-photon excitation microscopy z-sectioning plays a central role and uniformity of illumination is crucial due to the non-linear behaviour of emission. Since the main characteristics of a particular image formation situation can be efficiently summarized in a Sectioned Imaging property chart (SIPchart),3 we think that coupling this calibration sample with SIPchart is a very important step towards quantitative microscopy. In this work we use these polymer layers to measure the z-response of confocal, two-photon excitation and 4Pi laser scanning microscopes, selecting properly ultra-thin and thin layers. Due to their uniformity over a wide region, i.e. coverslip surface, it is possible to quantify the zresponse of the system over a full field of view area. These samples are also useful for monitoring photobleaching behavior as function of the illumination intensity. Ultrathin layers are also useful to supersede the conventional technique of calculating the derivative of the axial edges of a thick fluorescent layer. Polymer layers can be efficiently used for real time alignment of the microscope.
4Pi microscopy; Optical alignment; Optical sectioning; Shift-variant system; Thin fluorescent layer; Two-photon excitation microscopy; Ultra-thin uniform fluorescent layer; z-response
Settore FIS/03 - Fisica della Materia
2007
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/56446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact