BACKGROUND: Spinal cord injury (SCI) is a debilitating condition characterized by a complex of neurological dysfunctions ranging from loss of sensation to partial or complete limb paralysis. Recently, we reported that intravenous administration of neural precursors physiologically releasing erythropoietin (namely Er-NPCs) enhances functional recovery in animals following contusive spinal cord injury through the counteraction of secondary degeneration. Er-NPCs reached and accumulated at the lesion edges, where they survived throughout the prolonged period of observation and differentiated mostly into cholinergic neuron-like cells. OBJECTIVE: The aim of this study was to investigate the potential reparative and regenerative properties of Er-NPCs in a mouse experimental model of traumatic spinal cord injury. METHODS AND RESULTS: We report that Er-NPCs favoured the preservation of axonal myelin and strongly promoted the regrowth across the lesion site of monoaminergic and chatecolaminergic fibers that reached the distal portions of the injured cord. The use of an anterograde tracer transported by the regenerating axons allowed us to assess the extent of such a process. We show that axonal fluoro-ruby labelling was practically absent in saline-treated mice, while it resulted very significant in Er-NPCs transplanted animals. CONCLUSION: Our study shows that Er-NPCs promoted recovery of function after spinal cord injury, and that this is accompanied by preservation of myelination and strong re-innervation of the distal cord. Thus, regenerated axons may have contributed to the enhanced recovery of function after SCI.

EPO-releasing neural precursor cells promote axonal regeneration and recovery of function in spinal cord traumatic injury / S. Carelli, T. Giallongo, Z. Gombalova, D. Merli, A.M. Di Giulio, A. Gorio. - In: RESTORATIVE NEUROLOGY AND NEUROSCIENCE. - ISSN 0922-6028. - 35:6(2017 Nov 21), pp. 583-599. [10.3233/RNN-170750]

EPO-releasing neural precursor cells promote axonal regeneration and recovery of function in spinal cord traumatic injury

S. Carelli
Primo
;
T. Giallongo
Secondo
;
D. Merli;A.M. Di Giulio
Penultimo
;
A. Gorio
Ultimo
2017

Abstract

BACKGROUND: Spinal cord injury (SCI) is a debilitating condition characterized by a complex of neurological dysfunctions ranging from loss of sensation to partial or complete limb paralysis. Recently, we reported that intravenous administration of neural precursors physiologically releasing erythropoietin (namely Er-NPCs) enhances functional recovery in animals following contusive spinal cord injury through the counteraction of secondary degeneration. Er-NPCs reached and accumulated at the lesion edges, where they survived throughout the prolonged period of observation and differentiated mostly into cholinergic neuron-like cells. OBJECTIVE: The aim of this study was to investigate the potential reparative and regenerative properties of Er-NPCs in a mouse experimental model of traumatic spinal cord injury. METHODS AND RESULTS: We report that Er-NPCs favoured the preservation of axonal myelin and strongly promoted the regrowth across the lesion site of monoaminergic and chatecolaminergic fibers that reached the distal portions of the injured cord. The use of an anterograde tracer transported by the regenerating axons allowed us to assess the extent of such a process. We show that axonal fluoro-ruby labelling was practically absent in saline-treated mice, while it resulted very significant in Er-NPCs transplanted animals. CONCLUSION: Our study shows that Er-NPCs promoted recovery of function after spinal cord injury, and that this is accompanied by preservation of myelination and strong re-innervation of the distal cord. Thus, regenerated axons may have contributed to the enhanced recovery of function after SCI.
Settore BIO/14 - Farmacologia
21-nov-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
carelli et al. RNN 2017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/564149
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact