A dinuclear copper(ii) complex derived from the chiral N6 ligand (2S,2'S)-N,N'-(ethane-1,2-diyl)bis(2-((1-methyl-1H-imidazol-4-ylmethyl)-amino)-3-(1-trityl-1H-imidazol-4-yl)propanamide) (EHI) was synthesized and studied as a catalyst in stereoselective oxidation reactions. The ligand contains two sets of tridentate binding units, each of them giving rise to a coordination set consisting of a pair of 5- and 6-membered chelate rings, connected by an ethanediamide linker. Stereoselectivity effects were studied in the oxidations of a series of chiral l/d biogenic catechols and the pair of l/d-tyrosine methyl esters, in this case as their phenolate salts. The oxidation of β-naphthol has also been studied as a model monooxygenase reaction. The catechol oxidation was investigated in a range of substrate concentrations at slightly acidic pH and exhibited a marked dependence on the concentration of the [Cu2EHI]4+ complex. This behavior has been interpreted in terms of an equilibrium between a monomeric and a dimeric form of the catalyst. Binding studies of l- and d-tyrosine were performed as a support for the interpretation of the stereoselectivity effects observed in the reactions. In general, [Cu2EHI]4+ exhibits a binding preference for the l- rather than the d-enantiomer of the substrates, but it appears that in the catecholase reaction the oxidation of the d-isomer occurs at a faster rate than for the l counterpart. The same type of enantio-discriminating behavior is observed in the oxidation of l-/d-tyrosine methyl esters. In this case the reaction produces a complex mixture of products; the main product consisting of a trimeric compound, likely formed by radical coupling reactions, has been isolated and characterized. The oxidation of β-naphthol yields an additional product of the expected quinone but labeling experiments with 18-O2 show no oxygen incorporation into the product, confirming that the oxidation likely proceeds through a radical mechanism.

A dinuclear biomimetic Cu complex derived from l-histidine: synthesis and stereoselective oxidations / M.L. Perrone, E. Salvadeo, E. Lo Presti, L. Pasotti, E. Monzani, L. Santagostini, L. Casella. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - 46:12(2017 Feb 27), pp. 4018-4029. [10.1039/C7DT00147A]

A dinuclear biomimetic Cu complex derived from l-histidine: synthesis and stereoselective oxidations

L. Santagostini;
2017-02-27

Abstract

A dinuclear copper(ii) complex derived from the chiral N6 ligand (2S,2'S)-N,N'-(ethane-1,2-diyl)bis(2-((1-methyl-1H-imidazol-4-ylmethyl)-amino)-3-(1-trityl-1H-imidazol-4-yl)propanamide) (EHI) was synthesized and studied as a catalyst in stereoselective oxidation reactions. The ligand contains two sets of tridentate binding units, each of them giving rise to a coordination set consisting of a pair of 5- and 6-membered chelate rings, connected by an ethanediamide linker. Stereoselectivity effects were studied in the oxidations of a series of chiral l/d biogenic catechols and the pair of l/d-tyrosine methyl esters, in this case as their phenolate salts. The oxidation of β-naphthol has also been studied as a model monooxygenase reaction. The catechol oxidation was investigated in a range of substrate concentrations at slightly acidic pH and exhibited a marked dependence on the concentration of the [Cu2EHI]4+ complex. This behavior has been interpreted in terms of an equilibrium between a monomeric and a dimeric form of the catalyst. Binding studies of l- and d-tyrosine were performed as a support for the interpretation of the stereoselectivity effects observed in the reactions. In general, [Cu2EHI]4+ exhibits a binding preference for the l- rather than the d-enantiomer of the substrates, but it appears that in the catecholase reaction the oxidation of the d-isomer occurs at a faster rate than for the l counterpart. The same type of enantio-discriminating behavior is observed in the oxidation of l-/d-tyrosine methyl esters. In this case the reaction produces a complex mixture of products; the main product consisting of a trimeric compound, likely formed by radical coupling reactions, has been isolated and characterized. The oxidation of β-naphthol yields an additional product of the expected quinone but labeling experiments with 18-O2 show no oxygen incorporation into the product, confirming that the oxidation likely proceeds through a radical mechanism.
Inorganic Chemistry
Settore CHIM/03 - Chimica Generale e Inorganica
Article (author)
File in questo prodotto:
File Dimensione Formato  
c7dt00147a.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 736.29 kB
Formato Adobe PDF
736.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/562603
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact