ABSTRACT: Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match blood demand, both at rest and during acute stress, through the release of noradrenaline (NE). Junctional sites at the interface between the two cell types have been observed, although whether direct neurocardiac coupling has a role in heart physiology has not been clearly demonstrated to date. We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by fluorescence resonance energy transfer-based imaging of cAMP in co-cultures, as a readout of cardiac β-adrenergic receptor activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites in the human and rodent heart, as well as in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signalling domain with an elevated NE concentration. In the living mouse, optogenetic activation of cardiac SNs innervating the sino-atrial node resulted in an instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. Remarkably, inhibition of the optogenetically elicited chronotropic responses required a high dose of propranolol (20-50 mg kg-1 ), suggesting that sympathetic neurotransmission in the heart occurs at a locally elevated NE concentration. Our in vitro and in vivo data suggest that the control of cardiac function by SNs occurs via direct intercellular coupling as a result of the establishment of a specific junctional site.

Dynamics of neuro-effector coupling at cardiac sympathetic synapses / V. Prando, F. Da Broi, M. Franzoso, A.P. Plazzo, N. Pianca, M. Francolini, C. Basso, M.W. Kay, T. Zaglia, M. Mongillo. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 0022-3751. - (2018). [Epub ahead of print] [10.1113/JP275693]

Dynamics of neuro-effector coupling at cardiac sympathetic synapses

M. Francolini;
2018

Abstract

ABSTRACT: Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match blood demand, both at rest and during acute stress, through the release of noradrenaline (NE). Junctional sites at the interface between the two cell types have been observed, although whether direct neurocardiac coupling has a role in heart physiology has not been clearly demonstrated to date. We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by fluorescence resonance energy transfer-based imaging of cAMP in co-cultures, as a readout of cardiac β-adrenergic receptor activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites in the human and rodent heart, as well as in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signalling domain with an elevated NE concentration. In the living mouse, optogenetic activation of cardiac SNs innervating the sino-atrial node resulted in an instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. Remarkably, inhibition of the optogenetically elicited chronotropic responses required a high dose of propranolol (20-50 mg kg-1 ), suggesting that sympathetic neurotransmission in the heart occurs at a locally elevated NE concentration. Our in vitro and in vivo data suggest that the control of cardiac function by SNs occurs via direct intercellular coupling as a result of the establishment of a specific junctional site.
Settore BIO/13 - Biologia Applicata
2018
10-mar-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Prando_et_al-2017-The_Journal_of_Physiology.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/561825
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 44
social impact