Let F be a global function field in characteristic p>0. There exists many different types of L-functions that can be associated to F, such as the Artin L-functions, the Goss Zeta function or the p-adic L-functions. In this work i have investigated the correlations between these analytic objects and the Stickelberger series, which is a formal power series whose coefficients lie in a suitable Galois algebra. In the second part of this work i have studied the Iwasawa extension generated by the p-torsion of a Hayes module and i have used the Stickelberger series to prove a "main conjecture" for the p-part of the class group.

STICKELBERGER SERIES AND IWASAWA MAIN CONJECTURE FOR FUNCTION FIELDS / E. Coscelli ; tutor: F. Andreatta ; co-tutor: A. Bandini ; coordinatore: V. Mastropietro. DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2018 Mar 15. 30. ciclo, Anno Accademico 2017. [10.13130/coscelli-edoardo_phd2018-03-15].

STICKELBERGER SERIES AND IWASAWA MAIN CONJECTURE FOR FUNCTION FIELDS

E. Coscelli
2018

Abstract

Let F be a global function field in characteristic p>0. There exists many different types of L-functions that can be associated to F, such as the Artin L-functions, the Goss Zeta function or the p-adic L-functions. In this work i have investigated the correlations between these analytic objects and the Stickelberger series, which is a formal power series whose coefficients lie in a suitable Galois algebra. In the second part of this work i have studied the Iwasawa extension generated by the p-torsion of a Hayes module and i have used the Stickelberger series to prove a "main conjecture" for the p-part of the class group.
15-mar-2018
number theory; algebra; function fields; iwasawa theory; main conjecture; L functions; stickelberger series; Hayes module
Settore MAT/02 - Algebra
ANDREATTA, FABRIZIO
MASTROPIETRO, VIERI
Doctoral Thesis
STICKELBERGER SERIES AND IWASAWA MAIN CONJECTURE FOR FUNCTION FIELDS / E. Coscelli ; tutor: F. Andreatta ; co-tutor: A. Bandini ; coordinatore: V. Mastropietro. DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2018 Mar 15. 30. ciclo, Anno Accademico 2017. [10.13130/coscelli-edoardo_phd2018-03-15].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R10982.pdf

accesso aperto

Descrizione: PhD thesis
Tipologia: Tesi di dottorato completa
Dimensione 742.99 kB
Formato Adobe PDF
742.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/561439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact