The C-19 quassinoid eurycomalactone (1) has recently been shown to be a potent (IC50 = 0.5 μM) NF-κB inhibitor in a luciferase reporter model. In this study, we show that 1 with similar potency inhibited the expression of the NF-κB-dependent target genes ICAM-1, VCAM-1, and E-selectin in TNFα-activated human endothelial cells (HUVECtert) by flow cytometry experiments. Surprisingly, 1 (2 μM) did not inhibit TNFα-induced IKKα/β or IκBα phosphorylation significantly. Also, the TNFα-induced degradation of IκBα remained unchanged in response to 1 (2 μM). In addition, pretreatment of HUVECtert with 1 (2 μM) had no statistically significant effect on TNFα-mediated nuclear translocation of the NF-κB subunit p65 (RelA). Quantitative RT-PCR revealed that 1 (0.5-5 μM) exhibited diverse effects on the TNFα-induced transcription of ICAM-1, VCAM-1, and SELE genes since the mRNA level either remained unchanged (ICAM-1, E-selectin, and VCAM-1 at 0.5 μM 1), was reduced (VCAM-1 at 5 μM 1), or even increased (E-selectin at 5 μM 1). Finally, the time-dependent depletion of a short-lived protein (cyclin D1) as well as the measurement of de novo protein synthesis in the presence of 1 (2-5 μM) suggested that 1 might act as a protein synthesis inhibitor rather than an inhibitor of early NF-κB signaling.
Eurycomalactone inhibits expression of endothelial adhesion molecules at a post-transcriptional level / C. Malainer, D. Schachner, E. Sangiovanni, A.G. Atanasov, S. Schwaiger, H. Stuppner, E.H. Heiss, V.M. Dirsch. - In: JOURNAL OF NATURAL PRODUCTS. - ISSN 0163-3864. - 80:12(2017 Dec 22), pp. 3186-3193. [10.1021/acs.jnatprod.7b00503]
Eurycomalactone inhibits expression of endothelial adhesion molecules at a post-transcriptional level
E. Sangiovanni;
2017
Abstract
The C-19 quassinoid eurycomalactone (1) has recently been shown to be a potent (IC50 = 0.5 μM) NF-κB inhibitor in a luciferase reporter model. In this study, we show that 1 with similar potency inhibited the expression of the NF-κB-dependent target genes ICAM-1, VCAM-1, and E-selectin in TNFα-activated human endothelial cells (HUVECtert) by flow cytometry experiments. Surprisingly, 1 (2 μM) did not inhibit TNFα-induced IKKα/β or IκBα phosphorylation significantly. Also, the TNFα-induced degradation of IκBα remained unchanged in response to 1 (2 μM). In addition, pretreatment of HUVECtert with 1 (2 μM) had no statistically significant effect on TNFα-mediated nuclear translocation of the NF-κB subunit p65 (RelA). Quantitative RT-PCR revealed that 1 (0.5-5 μM) exhibited diverse effects on the TNFα-induced transcription of ICAM-1, VCAM-1, and SELE genes since the mRNA level either remained unchanged (ICAM-1, E-selectin, and VCAM-1 at 0.5 μM 1), was reduced (VCAM-1 at 5 μM 1), or even increased (E-selectin at 5 μM 1). Finally, the time-dependent depletion of a short-lived protein (cyclin D1) as well as the measurement of de novo protein synthesis in the presence of 1 (2-5 μM) suggested that 1 might act as a protein synthesis inhibitor rather than an inhibitor of early NF-κB signaling.File | Dimensione | Formato | |
---|---|---|---|
JNP.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.