We define a motive whose realizations afford modular forms (of arbitrary weight) on an indefinite division quaternion algebra. This generalizes work of Iovita-Spiess to odd weights in the spirit of Jordan-Livnè. It also generalizes a construction of Scholl to indefinite division quaternion algebras, and provides the first motivic construction of new-subspaces of modular forms.
Dirac operators in tensor categories and the motive of quaternionic modular forms / M. Masdeu, M.A. Seveso. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 313(2017 Jun), pp. 628-688. [10.1016/j.aim.2017.03.034]
Dirac operators in tensor categories and the motive of quaternionic modular forms
M.A. Seveso
2017
Abstract
We define a motive whose realizations afford modular forms (of arbitrary weight) on an indefinite division quaternion algebra. This generalizes work of Iovita-Spiess to odd weights in the spirit of Jordan-Livnè. It also generalizes a construction of Scholl to indefinite division quaternion algebras, and provides the first motivic construction of new-subspaces of modular forms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0001870817301019-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
862.13 kB
Formato
Adobe PDF
|
862.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.