Glucocorticoids are widely prescribed in treatment of rheumatoid arthritis, asthma, systemic lupus erythematosus, lymphoid neoplasia, skin and eye inflammations. However, well-documented adverse effects offset their therapeutic advantages. In this work, novel nano-hydrogels for the sustained delivery of dexamethasone were designed to increase both bioavailability and duration of the administered drug and reducing the therapeutic dose. Hydrogels are soft materials consisting of water-swollen cross-linked polymers to which the insertion of cyclodextrin (CD) moieties adds hydrophobic drug-complexing sites. Polyamidoamines (PAAs) are biocompatible and biodegradable polymers apt to create CD moieties in hydrogels. In this work, β or γ-CD/PAA nanogels have been developed. In vitro studies showed that a pretreatment for 24–48 h with dexamethasone-loaded, β-CD/PAA nanogel (nanodexa) inhibits adhesion of Jurkat cells to human umbilical vein endothelial cells (HUVEC) in conditions mimicking inflammation. This inhibitory effect was faster and higher than that displayed by free dexamethasone. Moreover, nanodexa inhibited COX-2 expression induced by PMA+A23187 in Jurkat cells after 24–48 h incubation in the 10−8–10−5 M concentration range, while dexamethasone was effective only at 10−5 M after 48 h treatment. Hence, the novel nanogel-dexamethasone formulation combines faster action with lower doses, suggesting the potential for being more manageable than the free drug, reducing its adverse side effects.

Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases / M. Argenziano, C. Dianzani, B. Ferrara, S. Swaminathan, A.G. Manfredi, E. Ranucci, R. Cavalli, P. Ferruti. - In: GELS. - ISSN 2310-2861. - 3:2(2017), pp. 22.1-22.15. [10.3390/gels3020022]

Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases

A.G. Manfredi;E. Ranucci;P. Ferruti
2017

Abstract

Glucocorticoids are widely prescribed in treatment of rheumatoid arthritis, asthma, systemic lupus erythematosus, lymphoid neoplasia, skin and eye inflammations. However, well-documented adverse effects offset their therapeutic advantages. In this work, novel nano-hydrogels for the sustained delivery of dexamethasone were designed to increase both bioavailability and duration of the administered drug and reducing the therapeutic dose. Hydrogels are soft materials consisting of water-swollen cross-linked polymers to which the insertion of cyclodextrin (CD) moieties adds hydrophobic drug-complexing sites. Polyamidoamines (PAAs) are biocompatible and biodegradable polymers apt to create CD moieties in hydrogels. In this work, β or γ-CD/PAA nanogels have been developed. In vitro studies showed that a pretreatment for 24–48 h with dexamethasone-loaded, β-CD/PAA nanogel (nanodexa) inhibits adhesion of Jurkat cells to human umbilical vein endothelial cells (HUVEC) in conditions mimicking inflammation. This inhibitory effect was faster and higher than that displayed by free dexamethasone. Moreover, nanodexa inhibited COX-2 expression induced by PMA+A23187 in Jurkat cells after 24–48 h incubation in the 10−8–10−5 M concentration range, while dexamethasone was effective only at 10−5 M after 48 h treatment. Hence, the novel nanogel-dexamethasone formulation combines faster action with lower doses, suggesting the potential for being more manageable than the free drug, reducing its adverse side effects.
dexamethasone; cyclodextrin/polyamidoamine nanohydrogels; topical delivery; β- and γ-Cyclodextrins; COX-2 expression
Settore CHIM/04 - Chimica Industriale
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
GELS-Roberta.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 5.71 MB
Formato Adobe PDF
5.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/558151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact