The development and the following inactivation of a carbon-based biocathode in single chamber and membraneless MFCs was investigated in this work. The electrochemical behavior of the biocathode has been analyzed over time during the MFC life. X-Ray Micro-Computed Tomographies (microCTs) have been carried out at progressive stages, documenting the building over time of a layer of scale deposition becoming thicker and thicker up to the cathode inactivation. The technique provides cross-sectional (tomographic) grayscale images and 3D reconstruction of volumes. Lighter color indicates lower X-ray attenuation (i.e., lower atomic density) thus allowing distinguishing biofilm from inorganic fouling on the basis of the average atomic number Z of each voxel (3D pixel). MicroCT was combined with Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX) in order to qualitatively recognize chemical species in each different layer of the cathode's section. Results correlated the presence of biofilm and calcium carbonate deposits, prevalently in the inner part of the cathode, with the produced electric current over time. A specific microCT-related software quantified the time-dependent carbonate scale deposition, identifying a correlation between the decreasing performances of the device and the increasing quantity of scale deposition that penetrates the cathode cross section in time.

Carbonate scale deactivating the biocathode in a microbial fuel cell / M. Santini, S. Marzorati, S. Fest-Santini, S. Trasatti, P. Cristiani. - In: JOURNAL OF POWER SOURCES. - ISSN 0378-7753. - 356(2017 Jun 15), pp. 400-407. [10.1016/j.jpowsour.2017.02.088]

Carbonate scale deactivating the biocathode in a microbial fuel cell

S. Marzorati;S. Trasatti;
2017

Abstract

The development and the following inactivation of a carbon-based biocathode in single chamber and membraneless MFCs was investigated in this work. The electrochemical behavior of the biocathode has been analyzed over time during the MFC life. X-Ray Micro-Computed Tomographies (microCTs) have been carried out at progressive stages, documenting the building over time of a layer of scale deposition becoming thicker and thicker up to the cathode inactivation. The technique provides cross-sectional (tomographic) grayscale images and 3D reconstruction of volumes. Lighter color indicates lower X-ray attenuation (i.e., lower atomic density) thus allowing distinguishing biofilm from inorganic fouling on the basis of the average atomic number Z of each voxel (3D pixel). MicroCT was combined with Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX) in order to qualitatively recognize chemical species in each different layer of the cathode's section. Results correlated the presence of biofilm and calcium carbonate deposits, prevalently in the inner part of the cathode, with the produced electric current over time. A specific microCT-related software quantified the time-dependent carbonate scale deposition, identifying a correlation between the decreasing performances of the device and the increasing quantity of scale deposition that penetrates the cathode cross section in time.
3D MicroCT; biocathode; carbonate deposition; microbial fuel cells; scaling
Settore ING-IND/22 - Scienza e Tecnologia dei Materiali
Settore ING-IND/23 - Chimica Fisica Applicata
15-giu-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Journal of Power Sources 356 (2017) 400e407.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/551245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 60
social impact