We find and prove new Pohozaev identities and integration by parts type formulas for anisotropic integrodifferential operators of order 2s, with s∈(0,1). These identities involve local boundary terms, in which the quantity plays the role that ∂u∕∂ν plays in the second-order case. Here, u is any solution to Lu = f(x,u) in Ω, with u = 0 in ℝn∖Ω, and d is the distance to ∂Ω.
Pohozaev identities for anisotropic integrodifferential operators / X. Ros-Oton, J. Serra, E. Valdinoci. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 42:8(2017), pp. 1290-1321.
Titolo: | Pohozaev identities for anisotropic integrodifferential operators |
Autori: | VALDINOCI, ENRICO (Ultimo) |
Parole Chiave: | nonlocal operator; Pohozaev identity; stable Lévy processes; analysis; applied mathematics |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Data di pubblicazione: | 2017 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/03605302.2017.1349148 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
CommPartialDifferentialEquations_PohozaevIdentities_2017.pdf | Publisher's version/PDF | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.