We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).
A rigidity result for non-local semilinear equations / A. Farina, E. Valdinoci. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147 A:5(2017), pp. 1009-1018.
A rigidity result for non-local semilinear equations
E. ValdinociUltimo
2017
Abstract
We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ProcRoyalSocEdinburgh_RigidityResultNonlocalSemilinearEquations_2017.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
154.98 kB
Formato
Adobe PDF
|
154.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.