We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).

A rigidity result for non-local semilinear equations / A. Farina, E. Valdinoci. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147 A:5(2017), pp. 1009-1018.

A rigidity result for non-local semilinear equations

E. Valdinoci
Ultimo
2017

Abstract

We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).
Liouville-type theorems; non-decreasing nonlinearities; non-local integrodifferential semilinear equations; mathematics (all)
Settore MAT/05 - Analisi Matematica
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
ProcRoyalSocEdinburgh_RigidityResultNonlocalSemilinearEquations_2017.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 154.98 kB
Formato Adobe PDF
154.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/549534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact