We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.
An unbounded family of log Calabi-Yau pairs / G. Bini, F.F. Favale. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 28:3(2017), pp. 619-633.
An unbounded family of log Calabi-Yau pairs
G. Bini;
2017
Abstract
We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RLM-2017-028-003-11.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
128.83 kB
Formato
Adobe PDF
|
128.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.