The combined use of cryo-TEM, dynamic light scattering, and small-angle X-ray and neutron scattering techniques allows a detailed structural model of complex pharmaceutical preparations of soybean lecithin/chitosan nanoparticles used as drug vectors to be worked out. Charge-driven self-organization of the lipid(-)/polysaccharide(+) vesicles occurs during rapid injection, under mechanical stirring, of an ethanol solution of soybean lecithin into a chitosan aqueous solution. We conclude that beyond the charge inversion region of the phase diagram, i.e., entering the redissolution region, the initial stages of particle formation are likely to be affected by a re-entrant condensation effect at the nanoscale. This behavior resembles that at the mesoscale which is well-known for polyion/amphiphile systems. Close to the boundary of the charge inversion region, nanoparticle formation occurs under a maximum condensation condition at the nanoscale and the complexation-aggregation process is driven toward a maximum multilamellarity. Interestingly, the formulation that maximizes vesicle multilamellarity corresponds to that displaying the highest drug loading efficiency.

Structure of self-organized multilayer nanoparticles for drug delivery / Y. Gerelli, S. Barbieri, M.T. Di Bari, A. Deriu, L. Cantù, P. Brocca, F. Sonvico, P. Colombo, R. May, S. Motta. - In: LANGMUIR. - ISSN 0743-7463. - 24:20(2008 Oct 21), pp. 11378-11384.

Structure of self-organized multilayer nanoparticles for drug delivery

L. Cantù;P. Brocca;S. Motta
2008

Abstract

The combined use of cryo-TEM, dynamic light scattering, and small-angle X-ray and neutron scattering techniques allows a detailed structural model of complex pharmaceutical preparations of soybean lecithin/chitosan nanoparticles used as drug vectors to be worked out. Charge-driven self-organization of the lipid(-)/polysaccharide(+) vesicles occurs during rapid injection, under mechanical stirring, of an ethanol solution of soybean lecithin into a chitosan aqueous solution. We conclude that beyond the charge inversion region of the phase diagram, i.e., entering the redissolution region, the initial stages of particle formation are likely to be affected by a re-entrant condensation effect at the nanoscale. This behavior resembles that at the mesoscale which is well-known for polyion/amphiphile systems. Close to the boundary of the charge inversion region, nanoparticle formation occurs under a maximum condensation condition at the nanoscale and the complexation-aggregation process is driven toward a maximum multilamellarity. Interestingly, the formulation that maximizes vesicle multilamellarity corresponds to that displaying the highest drug loading efficiency.
reverse-phase evaporation; reentrant condensation; lecithin liposomes; neutron-scattering; charge inversion; chitosan; carriers; phosphatidylcholine; polydispersity; paclitaxel
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
21-ott-2008
Article (author)
File in questo prodotto:
File Dimensione Formato  
la801992t.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 690.05 kB
Formato Adobe PDF
690.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/54732
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 48
social impact