The Thesis focuses on segmentation methods for the partitioning of spatial trajectories in semantically meaningful sub-trajectories and their application to the analysis of mobility behavior. Spatial trajectories are complex structured data consisting of sequences of temporally ordered spatio-temporal points sampling the continuous movement of an object in a reference space. Spatial trajectories can reveal behavioral information about individuals and groups of individuals, and that motivates the concern for data analysis techniques. Segmentation techniques are key for the analysis of spatial trajectories. In general, the segmentation task partitions a sequence of data points in a series of disjoint sub-sequences based on some homogeneity criteria. The Thesis focuses, in particular, on the use of clustering methods for the segmentation of spatial trajectories. Unlike the traditional clustering task, which is applied to sets of data points, the goal of this class of techniques is to partition sequential data in temporally separated clusters. Such techniques can be utilized for example to detect the sequences of places or regions visited by moving objects. While a number of techniques for the cluster-based segmentation are proposed in literature, none of them is really robust again noise, while the methodologies put in place to validate those techniques suffer from severe limitations, e.g., simple datasets, no comparison with ground truth. This Thesis focuses on a recent cluster-based segmentation method, called SeqScan, proposed in previous work. This technique promises to be robust against noise, nonetheless the approach is empirical and lacks a formal and theoretical framework. The contribution of this research is twofold. First it provides analytical support to SeqScan, defining a rigorous framework for the analysis of the properties of the model. The method is validated through an extensive experimentation conducted in an interdisciplinary setting and contrasting the segmentation with ground truth. The second contribution is the proposal of a technique for the discovery of a collective pattern, called gathering. The gathering pattern describes a situation in which a significant number of moving objects share the same region, for enough time periods with possibility of occasional absences, e.g. a concert, an exhibition. The technique is built on SeqScan. A platform, called MigrO, has been finally developed, including not only the algorithms but also a variety of tools facilitating data analysis.

La Tesi riguarda l'analisi e applicazione di metodi di segmentazione per il partizionamento delle traiettorie spaziali in sotto-traiettorie semanticamente significative, e il loro utilizzo per l'analisi del comportamento di oggetti in movimento. Le traiettorie spaziali sono dati strutturati complessi costituiti da sequenze ordinate di punti spazio-temporali che campionano il movimento continuo di un oggetto in uno spazio di riferimento. Le tecniche di segmentazione sono essenziali per l'analisi delle traiettorie spaziali. In generale, l'attività di segmentazione divide una sequenza di punti dati in una serie di sottosequenze disgiunte basate su criteri di omogeneità. La Tesi si focalizza, in particolare, sulle tecniche di segmentazione basate su “density based clustering”. A differenza dei processi di clustering tradizionali, che sono applicati ad “insiemi” di punti, le tecniche di segmentazione basate su clustering partizionano “sequenze” in una serie di “clusters” temporalmente separati. Possibili applicazioni includono l'analisi del movimento di individui in ambito urbano e lo studio del comportamento di animali. Alcune tecniche di segmentazione basate su “cluster” sono descritte in letteratura, tuttavia nessuna di queste soluzioni permette di gestire in modo efficace i punti non strutturati (noise). Inoltre, le metodologie adottate per validare queste tecniche soffrono di gravi limitazioni, ad esempio le verifiche sperimentale utilizzano dati molto semplici che non riflettono la complessità del movimento reale, come pure non permettono di effettuare un confronto con ground truth. Questa Tesi si focalizza su una recente tecnica per la segmentazione basata su cluster con noise, chiamata SeqScan, proposta in un lavoro precedente. In particolare, la ricerca ha affrontato i seguenti problemi: i) definizione di un framework rigoroso per l' analisi delle proprietà del modello di segmentazione; ii) validazione del metodo attraverso un'ampia sperimentazione che prevede il confronto con la ground truth; iii) estensione dell'approccio per consentire la individuazione di gatherings. Il gathering é un gruppo di oggetti mobili che condividono la stessa zona, per un certo periodo di tempo con la possibilità di assenze occasionali; iv) sviluppo di una piattaforma software che integra i diversi algoritmi ed ulteriori strumenti a supporto dell'analisi dei dati di mobilità.

SEGMENTATION TECHNIQUES BASED ON CLUSTERING FOR THE ANALYSIS OF MOBILITY DATA / F. Hachem ; supervisor: M. L. Damiani ; phd school master: P. Boldi. - : . DIPARTIMENTO DI INFORMATICA GIOVANNI DEGLI ANTONI, 2018 Feb 28. ((30. ciclo, Anno Accademico 2017. [10.13130/hachem-fatme_phd2018-02-28].

SEGMENTATION TECHNIQUES BASED ON CLUSTERING FOR THE ANALYSIS OF MOBILITY DATA

HACHEM, FATME
2018-02-28

Abstract

La Tesi riguarda l'analisi e applicazione di metodi di segmentazione per il partizionamento delle traiettorie spaziali in sotto-traiettorie semanticamente significative, e il loro utilizzo per l'analisi del comportamento di oggetti in movimento. Le traiettorie spaziali sono dati strutturati complessi costituiti da sequenze ordinate di punti spazio-temporali che campionano il movimento continuo di un oggetto in uno spazio di riferimento. Le tecniche di segmentazione sono essenziali per l'analisi delle traiettorie spaziali. In generale, l'attività di segmentazione divide una sequenza di punti dati in una serie di sottosequenze disgiunte basate su criteri di omogeneità. La Tesi si focalizza, in particolare, sulle tecniche di segmentazione basate su “density based clustering”. A differenza dei processi di clustering tradizionali, che sono applicati ad “insiemi” di punti, le tecniche di segmentazione basate su clustering partizionano “sequenze” in una serie di “clusters” temporalmente separati. Possibili applicazioni includono l'analisi del movimento di individui in ambito urbano e lo studio del comportamento di animali. Alcune tecniche di segmentazione basate su “cluster” sono descritte in letteratura, tuttavia nessuna di queste soluzioni permette di gestire in modo efficace i punti non strutturati (noise). Inoltre, le metodologie adottate per validare queste tecniche soffrono di gravi limitazioni, ad esempio le verifiche sperimentale utilizzano dati molto semplici che non riflettono la complessità del movimento reale, come pure non permettono di effettuare un confronto con ground truth. Questa Tesi si focalizza su una recente tecnica per la segmentazione basata su cluster con noise, chiamata SeqScan, proposta in un lavoro precedente. In particolare, la ricerca ha affrontato i seguenti problemi: i) definizione di un framework rigoroso per l' analisi delle proprietà del modello di segmentazione; ii) validazione del metodo attraverso un'ampia sperimentazione che prevede il confronto con la ground truth; iii) estensione dell'approccio per consentire la individuazione di gatherings. Il gathering é un gruppo di oggetti mobili che condividono la stessa zona, per un certo periodo di tempo con la possibilità di assenze occasionali; iv) sviluppo di una piattaforma software che integra i diversi algoritmi ed ulteriori strumenti a supporto dell'analisi dei dati di mobilità.
DAMIANI, MARIA LUISA
BOLDI, PAOLO
DAMIANI, MARIA LUISA
The Thesis focuses on segmentation methods for the partitioning of spatial trajectories in semantically meaningful sub-trajectories and their application to the analysis of mobility behavior. Spatial trajectories are complex structured data consisting of sequences of temporally ordered spatio-temporal points sampling the continuous movement of an object in a reference space. Spatial trajectories can reveal behavioral information about individuals and groups of individuals, and that motivates the concern for data analysis techniques. Segmentation techniques are key for the analysis of spatial trajectories. In general, the segmentation task partitions a sequence of data points in a series of disjoint sub-sequences based on some homogeneity criteria. The Thesis focuses, in particular, on the use of clustering methods for the segmentation of spatial trajectories. Unlike the traditional clustering task, which is applied to sets of data points, the goal of this class of techniques is to partition sequential data in temporally separated clusters. Such techniques can be utilized for example to detect the sequences of places or regions visited by moving objects. While a number of techniques for the cluster-based segmentation are proposed in literature, none of them is really robust again noise, while the methodologies put in place to validate those techniques suffer from severe limitations, e.g., simple datasets, no comparison with ground truth. This Thesis focuses on a recent cluster-based segmentation method, called SeqScan, proposed in previous work. This technique promises to be robust against noise, nonetheless the approach is empirical and lacks a formal and theoretical framework. The contribution of this research is twofold. First it provides analytical support to SeqScan, defining a rigorous framework for the analysis of the properties of the model. The method is validated through an extensive experimentation conducted in an interdisciplinary setting and contrasting the segmentation with ground truth. The second contribution is the proposal of a technique for the discovery of a collective pattern, called gathering. The gathering pattern describes a situation in which a significant number of moving objects share the same region, for enough time periods with possibility of occasional absences, e.g. a concert, an exhibition. The technique is built on SeqScan. A platform, called MigrO, has been finally developed, including not only the algorithms but also a variety of tools facilitating data analysis.
Settore INF/01 - Informatica
SEGMENTATION TECHNIQUES BASED ON CLUSTERING FOR THE ANALYSIS OF MOBILITY DATA / F. Hachem ; supervisor: M. L. Damiani ; phd school master: P. Boldi. - : . DIPARTIMENTO DI INFORMATICA GIOVANNI DEGLI ANTONI, 2018 Feb 28. ((30. ciclo, Anno Accademico 2017. [10.13130/hachem-fatme_phd2018-02-28].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R11091.pdf

accesso aperto

Tipologia: Tesi di dottorato completa
Dimensione 13.64 MB
Formato Adobe PDF
13.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/546563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact