In this paper, we face the problem of simulating discrete random variables with general and varying distributions in a scalable framework, where fully parallelizable operations should be preferred. The new paradigm is inspired by the context of discrete choice models. Compared to classical algorithms, we add parallelized randomness, and we leave the final simulation of the random variable to a single associative operation. We characterize the set of algorithms that work in this way, and those algorithms that may have an additive or multiplicative local noise. As a consequence, we could define a natural way to solve some popular simulation problems.

Generation of discrete random variables in scalable frameworks / G. Aletti. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 132(2018), pp. 99-106. [10.1016/j.spl.2017.09.004]

Generation of discrete random variables in scalable frameworks

G. Aletti
2018

Abstract

In this paper, we face the problem of simulating discrete random variables with general and varying distributions in a scalable framework, where fully parallelizable operations should be preferred. The new paradigm is inspired by the context of discrete choice models. Compared to classical algorithms, we add parallelized randomness, and we leave the final simulation of the random variable to a single associative operation. We characterize the set of algorithms that work in this way, and those algorithms that may have an additive or multiplicative local noise. As a consequence, we could define a natural way to solve some popular simulation problems.
Discrete random number generation; Discrete choice model; Scalable framework; Parallelizable algorithm
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore SECS-S/01 - Statistica
2018
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
http://hdl.handle.net/2434/457543
Article (author)
File in questo prodotto:
File Dimensione Formato  
ARXIV-rand_SQL_3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 374.25 kB
Formato Adobe PDF
374.25 kB Adobe PDF Visualizza/Apri
1-s2.0-S0167715217302900-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 589.94 kB
Formato Adobe PDF
589.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/546154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact